
Draft Version 1.1 (November 2005)

Users Guide for CFL3D
Version 6.4 – Course Notes

Robert E. Bartels
Aeroelasticity Branch

Christopher L. Rumsey, Robert T. Biedron
Computational Aeroacoustics Branch

NASA Langley Research Center
Hampton, VA 23681-0001

2

Abstract

This course on the computational fluid dynamics code CFL3D version 6.4 is intended to provide from basic to advanced
users the information necessary to successfully use the code for a broad range of cases. Much of the course covers
capability that has been a part of previous versions of the code, with material compiled from a CFL3D v5.0 manual and
from the CFL3D v6 web site prior to the current release. This part of the material is presented to users of the code not
familiar with computational fluid dynamics. There is new capability in CFL3D version 6.4 presented here that has not
previously been published. There are also outdated features no longer used or recommended in recent releases of the
code. The information offered here supersedes earlier manuals and updates outdated usage. Where current usage
supersedes older versions, notation of that is made. It also provides hints for usage, code installation and examples not
found elsewhere.

3

Course Table of Contents
Topic Page

Introduction and Course Overview 6
What’s new in CFL3D v6.4 8
CFL3D Overview 9
Getting Started 15
Equations and Dimensions 21
Problem Formulation and Setup 24

Grid Generation 25
Multi-gridable Dimensions 33
Blocking and Boundary Conditions 35

Setting Up a Steady Run 63
Input/Output Specification 63
Title Line and Condition Data 66
Calculation of ReUe 69
Steady Solution Cycling 71
Grid Sequencing 74
Grid Sequencing at the Coarsest Level Only 81
Ramping up dt 84
Miscellaneous Input 85

Setting Up an Unsteady Run 93
Input for Time Advancement 93
Equations for τ-TS Time Advancement 97
Equations for t-TS Time Advancement 98

4

Course Table of Contents
Topic Page

Case Study 99
Speeding Up Execution Time 100
Sizing dt and Number of Sub-iterations 102
Sub-iterative Output – Checking Convergnece 105
Multi-grid Strategies 109

User Specified Grid Motion 114
User Specified Rigid Grid Motion 116
Surface Motion - Deforming Mesh 129

Deforming Mesh Terminology 131
Deforming Mesh Using Exponential Decay Method 132
Transfinite Interpolation 134
Deforming Mesh Using Finite Macro-Element Method 135
Input for Deforming Mesh 137
Example 1: 3D Control Surface Rotation 146
Example 2: 2D Flap Rotation 157
Example 3: 2D Airfoil Pitch 175
Example 4: Internal Flow through a Flexible Tube 177
Example 5: Transport Wing Bending 178
Geometric Conservation Law 179
Coupled Motion: Deforming and Rigid Motion 181

5

Course Table of Contents
Topic Page

Aeroelastic Analysis 193
Example 1: BACT Model 193
Aeroelastic Input 199
Modal Surface Input 207
Aeroelastic Output 210
Strategies for Aeroelastic Computations 212
User Specified Modal Motion 213
Example: Gaussian Pulsed Modal Motion 217

Keyword Input 219
Block Splitting and MPI 232
Running CFL3D in MPI Mode 251
Flow Visualization 256
Useful CFL3D Tools 259
References 263
Summary 264

6

Introduction and Course Overview
These notes are an outgrowth of a course that was presented on the computational fluid dynamics code CFL3D version
6.4. Publication of this material in this form makes it available to many more users of the code. These notes provide
the information necessary to successfully use the code for a broad range of cases. The target audience ranges from
basic to advanced users. New users should find useful the discussion of general features of the code and the many
options that are available, code set up, creation of grids and input for steady and unsteady computations. This part of
the notes also discusses what new features are available in version 6.4. There is a lengthy discussion of issues related
to unsteady computations, moving and deforming meshes, aeroelastic simulations and parallel computing using the
message passing interface (MPI). Within these discussions there are detailed instructions on input parameters,
their use within the code, as well as illustrative examples.

Much of the course covers capability that has been a part of previous versions of the code, with material compiled from
a CFL3D v5.0 manual and from the CFL3D v6 web site prior to the current release. This part of the material is
presented to users of the code not familiar with computational fluid dynamics. There is also new capability in CFL3D
v6.4 that has not previously been published. This course intends to acquaint users with this new capability. There are
also outdated features no longer used or recommended in recent releases of the code. The information offered here
supersedes earlier manuals and updates outdated usage. Where current usage supersedes older versions, notation of
that is made. It also provides hints for usage and code installation not found elsewhere.

There is much information in the CFL3D v5.0 manual that is not presented in these notes. The use of patched, overset
or embedded grids is not discussed here. Since the intention is to provide users a practical guide on code usage,
there is very little discussion of the fluid dynamics equations and computational method used. This information is
available in the CFL3D v5.0 manual.

7

Introduction and Course Overview

The attempt is to organize this course in an intuitive way. Topics are presented in the order they would be
encountered in the process of building up a real test case. The ordering of the information reflects the course
instructor’s own learning experience with CFL3D. Others may order the material differently. This course is not
comprehensive. Because of the vast number of ways in which CFL3D can be used there are many input options that
are not discussed and none are discussed in complete detail. Those that are discussed are the more commonly used
features. By the end of the course the attendee should be able to perform a number of different analyses with the
code. If the reader is interested in more detail also consult the CFL3D v6 web page and the CFL3D v5.0 user’s
manual. These references are listed at the back of the course notes.

8

What’s New in CFL3D v6.4
There is new capability in CFL3D v6.4 that is presented in this course.
They are:

• New mesh deformation scheme with more options available.
• Second order time accuracy in turbulence modeling
• New keywords are available

- First order time accurate turbulence modeling
- New options in turbulence modeling
- Full Navier-Stokes terms available
- Option to exercise mesh deformation without full flow solver
- Calculation of CFL number can be modified for axisymmetric

cases to increase convergence rate
• Changes in the input for prescribed modal motion

9

CFL3D Overview
• CFL3D – Computational Fluids Laboratory 3-D flow solver

– Euler
– Laminar thin-layer Navier-Stokes
– Reynolds-Averaged thin-layer Navier-Stokes (RANS)
– Structured grid
– Single or multi-block
– Dynamic memory
– Parallel (MPI) capability
– Moving grid and mesh deformation capability
– CGNS (CFD General Notation System) capability for CFD output

• Discretization and numerical method
– Conservation law form of the Euler or RANS equations
– Spatial discretization is semi-discrete finite-volume approach
– Upwind-Biasing is used for the convective and pressure terms
– Solves either the steady or unsteady form of the equations
– Time advancement is implicit with dual time stepping

and sub-iterations

10

CFL3D Overview
• Discretization and numerical method (…continued)

– Approximate-Factorized (AF) numerical scheme
– Explicit block boundary conditions
– Multigrid
– Grid sequencing

• Block structures
– 1-1 blocking (preferred)
– Patching
– Overlapping
– Embedding
– Sliding patched zone interfaces
– Grids must have been created prior to execution of CFL3D

11

CFL3D Overview
• Turbulence models for RANS computation

– 0-equation models: Baldwin-Lomax, Baldwin-Lomax with Degani-Schiff
modification

– 1-equation models: Baldwin-Barth, Spalart-Allmaras (Including DES)
– 2-equation models: Wilcox k-ω model, Menter’s k-ω Shear Stress Transport

(SST) model, Abid k-ω model, several EASM k-ω and k-ε model variations, k-
enstrophy model

• Computing modes
– Sequential or single processor (single or multiple blocks)
– Parallel processing

• Message Passing Interface (MPI)
– Requires multi-block structure
– May be run on distributed memory machines. (PC clusters or parallel

supercomputer)

12

CFL3D Overview
• Computing modes (…continued)

– Complex computation
• Allows computation of sensitivity derivatives due to static and dynamic variables (e.g.

dCL/dα)
• Requires compiling of the complex executable for static and dynamic sensitivity

calculations
• Dynamic sensitivity calculations require additional keyword input

• Code developers and points of contact:
– Many developers have contributed to CFL3D
– Most recent primary NASA LaRC developers (POC’s) are:

Dr. Robert T. Biedron (757-864-2156, r.t.biedron@larc.nasa.gov) general flow solver,
multiblock, MPI
Dr. Christopher Rumsey (757-864-2165,c.l.rumsey@larc.nasa.gov) – turbulence models
Dr. Bob Bartels (757-864-2813, r.e.bartels@larc.nasa.gov) –
aeroelastic modules and deforming mesh

13

CFL3D Overview
• Online and printable documentation:

http://cfl3d.larc.nasa.gov/Cfl3dv6/cfl3dv6.html
• Recommend printing the Version 5.0 manual for reference (found as a link at

the web site above)
• Acquiring the code:

– Version 6 is currently available for general distribution to U.S. citizens within the United
States. The code cannot be released outside of the United States. If you would like a copy
of the code, please follow the request procedure below:

– Send e-mail or FAX (757-864-8816) to one of the POC’s requesting CFL3D Version 6, along
with a brief description of the planned usage of the code, your phone number, and FAX
number.

– Your request will be forwarded internally to a NASA Software Releasing Authority (SRA). The
SRA will determine whether or not the code may be released to the you; if so, the SRA will e-
mail or FAX a Usage Agreement to you to fill out, sign and return to the SRA.

http://cfl3d.larc.nasa.gov/Cfl3dv6/cfl3dv6.html
mailto:r.t.biedron@larc.nasa.gov

14

CFL3D Overview
• After the SRA has granted permission, the code will be provided to the you

electronically. In addition, you will be added to the Version 6 user list, and will
receive any updates and/or corrections that occur.

• Note: even if you are a registered Version 5 user you must still follow the
formal request procedure for Version 6.

• Conditions of use:
– Do not distribute any part of the code outside of your working group
– Report any bugs you may find
– CFL3D is restricted to use within the United States
– Abide by any additional conditions in the usage agreement

15

Getting Started
• To install CFL3v6 on a particular machine, you must have

the following file:

cfl3dv6.tar.DATE.gz (tarred and gzipped version 6 package)

Note: DATE indicates the release date in the form MMM_DD_YYYY. For
example, cfl3dv6.tar.Sep_12_2003 indicates the code as of
September 12, 2003.

• Make sure that: ./ is in your path; if not, you will have to explicitly prepend ./ to
all the commands below

Type:

gunzip cfl3dv6.tar.DATE.gz

tar -xvf cfl3dv6.tar.DATE

16

Getting Started
You should end up with the following directory structure:

CFL3DV6

SOURCE BUILD HEADER

Within the source directory:
SOURCE

CFL3D PRECFL3D RONNIE MAGGIE SPLITTER TOOLS

DIST LIBS

17

Getting Started
Within the build directory:

BUILD

CFL CFLCMPLX PRECFL PRERON RON MAG TOOLS SPLIT

LIBS SEQ MPI LIBS SEQ MPI SEQ SEQ SEQ SEQ SEQ SEQ

This is the directory in which
the ./Install and ./make commands
are executed

After making, the
executable cfl3d_seq will be
found here

After making, the
executable cfl3d_mpi will be
found here

18

Getting Started
– In the subdirectory build, type:

Install [options] or ./Install [options]

Where [options] may be blank or one or more of the following:

-no_opt
• create executables with little optimization but fast compilation

-single
• create single precision executables

-noredirect
• disallow redirected input file; needed only for SP2 and sometimes on Linux with MPI

-mpichdir=dir1
• use MPICH on a workstation cluster; dir1 is the directory where mpich is located - not used on MPP

machines
-linux_compiler_flags=flag
• sets up to compile using special compiler flags for use on Linux operating systems only; flag is

currently Intel, PG, Lahey, or Alpha (Intel is currently the default) Example: To use the Portland
Group compiler MUST install with: ./Install -linux_compiler_flags=PG

-help
• print out the Install options

19

Getting Started
– Note: the directory paths for either the mpichdir or cgnsdir options

should be either absolute paths or paths relative to the installation
directory; the use of ~ to denote a home directory is not allowed.

– If -no_opt is not specified, various compiler optimization levels are used
to speed execution but results in slower compilation.

– If -mpichdir=dir1 is not used, then it is assumed "native" MPI is
available, and will use a default location for the necessary MPI libraries.

– If -single is not used, then double precision executables will be created
at the make [] command.

– Once installation is complete, a makefile will automatically be created
for the machine platform on which the code is installed.

– Go to the build directory.
– By typing “make” you will see all the make options available.

20

Getting Started
– Several of the most common make options are:

make cfl3d_seq - make the sequential (single processor) version of the code
make cfl3d_mpi - make the MPI (multiprocessor) version of the code
make splitter - make the block splitter executable
make cfl3d_tools - make some of the cfl3d utilities

– Within the build directory, type the make option for the executable you
want.

– To execute the sequential code type:
./cfl3d_seq < cfl3d.inp

– To execute the MPI code type:
mpirun –np <noprocessors> ./cfl3d_mpi < cfl3d.inp

where <noprocessors> is typically one greater than the number of blocks*

* The MPI process requires an extra administrative processor beyond those that perform the
computation. (e.g. For a 12 block grid, all with equal numbers of grid points, to be run on 3
processors, noprocessors = 4)

21

Equations and dimensions
Reference parameters

• The governing equations are the Euler or Navier-Stokes
equations combined with a turbulence model for RANS
computation

• The governing equations are non-dimensionalized based
on the following parameters:

−
−
−
−

∞

∞

∞

µ

ρ

~
~
~

~

a

LR Reference length used by the code (dimensional)

Free-stream density, slug/feet3

Free-stream speed of sound, feet/second

Free-stream molecular viscosity, slug/feet-second

22

Equations and dimensions

• Since there is no standard system of units for CFD models
the non-dimensionalization in CFL3D removes the necessity
of converting grids into units compatible with the code. The
way in which this is accomplished will be presented later in
this course.

• Note that the term free-stream is used in the
non-dimensionalization. CFL3D was developed primarily as
an external flow solver. It has the capability to perform
computations for internal flows as well. Therefore a more
general term reference state should probably be used, but
the term free-stream is used throughout the documentation.

23

Equations and dimensions
Non-dimensional variables

In CFL3D the non-dimensionalizations are performed as follows:

∞∞∞∞

∞

====

====

a
ww

a
vv

a
uu

L
att

L
zz

L
yy

L
xx

RRRR

~
~

~
~

~
~

~
~

~
~~

~
~

~
~

~
~

ρ
ρρ

Time nondim-
ensionalized by
speed of sound
and ref length

Velocities nondim-
ensionalized by
speed of sound

Non-dimensionalizing by speed of sound makes transonic the natural flow regime for CFL3D,
although low speed and hypersonic flows can be computed, with modified input, as well.

24

Problem Formulation and Setup
Overview

• There are five steps in problem formulation and setup
for steady and unsteady computation:

- Condition definition
- Grid generation
- Block splitting (if necessary)
- Blocking and boundary conditions
- Input development

• Parameters that define a condition are:

- Mach number
- Reynolds number
- Ambient temperature
- Grid orientation (angle of attack, side slip, etc…)

Input for these will be discussed later. For the moment several of
these parameters are required for the proper construction of the grid…

25

Problem Formulation and Setup
Grid generation

Considerations that are important for generation of a grid:

• Reynolds number sets permissible ∆y+ at the surface.
• For most turbulent computations typically want a y+ ~ 1

for first grid off the surface
• For turbulent computations with wall function, typically want a

y+ ~ 50-100 for first grid off the surface
• This requires an estimate of the wall shear stress prior to

computing

Note:
ρµνµτ

ρ
τ

ν
/,, =

∂
∂

==+

y
uyy w

w

26

Problem Formulation and Setup
Grid generation

• After the first converged successful run with a course grid, y+ of the
first grid can be checked. This is found at the end of the cfl3d.out
file.

YPLUS STATISTICS (endpts not included) - BLOCK 1 (GRID 1)

K=1 SURFACE:
Y+ MAX JLOC ILOC Y+ MIN JLOC ILOC

0.535E+00 151 1 0.261E-01 217 1
DN MAX JLOC ILOC DN MIN JLOC ILOC

0.152E-05 228 1 0.149E-05 219 1
Y+ AVG Y+ STD DEV NY+ > 5 NPTS

0.264E+00 0.373E+00 0 199

YPLUS STATISTICS (endpts not included) - ALL GLOBAL BLOCKS
Y+ MAX ILOC JLOC KLOC BLOCK GRID

0.535E+00 1 151 1 1 1
Y+ MIN ILOC JLOC KLOC BLOCK GRID

0.261E-01 1 217 1 1 1

etc…

27

Problem Formulation and Setup
Grid generation

• Grid stretching away from a surface.
• Rule of thumb: ∆ζk+1 should be no more than 1.2 to 1.5 times ∆ζk

∆ζk+1

∆ζk

28

Problem Formulation and Setup
Grid generation

• Outer extent of grid
• Rule of thumb: The outer boundary should be at least 15-20 body

lengths away (3D) and at least 30 body lengths away (2D). This is
not a hard and fast rule and there are some notable exceptions.

29

Problem Formulation and Setup
Grid generation

• Grid quality
• Grid metric smoothness. CFL3D assesses the size of local

variations in grid metrics. Warnings are printed to the cfl3d.out
file. Any messages of the following form indicate a problem with
the grid:

FATAL si grid normal direction change near j,k,i,i+1= 23 5 164 165
... suspect bad grid

FATAL sj grid normal direction change near j,k,i,i+1= 23 5 164 165
... suspect bad grid

Etc… Or

WARNING: Dramatic si grid norm direction change (>120deg)
WARNING: Dramatic sj grid norm direction change (>120deg)

Etc…

30

Problem Formulation and Setup
Grid generation

• Grid quality, continued
• Negative grid volumes. CFL3D checks whether there are

negative volumes in the grid. Under normal operating procedures
the code will exit with an error message in the cfl3d.error file.*

• Grid clustering to resolve flow gradients
• Resolving a wake. Although angle of attack is specified in the

input, it does result in the possibility of flow separation and wing
stall and resulting wake. These may need grid clustering.

• Resolving a shock or curvature effect. Mach number effects
such as a shock or surface curvature may result in gradients that
require resolving.

• These steps must be performed prior to running CFL3D.

* There is a keyword option that allows computing to continue with negative volumes. This option will be
discussed later in the course under “Keyword Input”.

31

Problem Formulation and Setup
Grid generation

• Grid file format
• The grid file format must be unformatted
• Two grid data formats are possible, plot3d and cfl3d. These

formats are presented in the CFL3D version 5.0 manual.
• If CFL3D is compiled in double precision, the grid file must be

written as double precision real
• Example of multi-platform issue: If a Linux compiler is used to

compile CFL3D to read an SGI unformatted grid file, the grid file
must be generated with the same compile options

Example: Suppose the code ‘hygrid’ is used to generate the unformatted
grid file. On a Linux based PC platform using the Portland Group
compiler, the compile option –byteswapio swaps bytes from
big-endian to little-endian for input compatibility with a Sun or
SGI system. This will allow CFL3D compiled with this option to
read the grid file created either on the PC cluster using this compiler
option or on an SGI machine.

32

Problem Formulation and Setup
Grid generation

CFL3D requires that the right-hand rule be observed in both the
x,y,z orientation and the i,j,k index directions. Also, i,j and k do not
have to be in the x,y and z directions. Any permutation is valid as
long as the right-hand rule is upheld. Caveat: When using
turbulence models there are direction preferences as will be
discussed.

kk

j

i ij

33

Problem Formulation and Setup
Multigridable dimensions

To use multigrid, grid dimensions including all b.c. segments must be multigridable

From CFL3D User’s Manual, 7.1.2, pg 129

34

Problem Formulation and Setup
Multigrid dimensions

From CFL3D User’s Manual, 7.1.2, pg 129

35

Problem Formulation and Setup
Blocking and boundary conditions

Blocking and boundary conditions are specified at the following boundaries:

i0 (i=1) and idim
j0 (j=1) and jdim
k0 (k=1) and kdim

where idim, jdim and kdim are the block dimensions in the ijk-directions.
Blocking and boundary condition data can be composed of multiple
segments but the combined segments must span the each of the six block
faces. Note that to perform multigrid computations, the boundary and
blocking segments must be multigridable integers.

36

Problem Formulation and Setup
Blocking and boundary conditions

Example of possible blocking or boundary condition segments on the k0
face. Suppose that part of the k0 face below represents the surface of a
wing.
j=4

Blocking
segment

j=1
i=1 i=5Solid surface boundary

condition segment

37

Problem Formulation and Setup
Blocking and boundary conditions

Volume edges define geometric extremities. These will also be the
start and end points of blocking pairs. All blocking and boundary
conditions will be on external surfaces of grid blocks.

Example: Trailing edge of an airfoil or tip of a wing.

Volume corners defined
by grid points, airfoil
trailing edge or wing tip
defined by volume edge

Airfoil trailing
edge or wing
tip

Block boundary
that will require
blocking data.
This boundary will
comprise part or all
of a grid face.

38

Problem Formulation and Setup
Blocking and boundary conditions

Blocking defines the start and ending indices of 1-1 interfaces between one or
more corresponding grid blocks.

Consider the example of a 2D airfoil using a single block C-grid with
dimension 2x273x93. CFL3D is a finite volume code and therefore requires
2 grid points in the span-wise direction (always i-dir for a 2D grid)

j=237
(t.e.) j=273

j=37
(t.e.)

j=1
j=1

j=273

k=1

k=93

39

Problem Formulation and Setup
Blocking and boundary conditions

The following is the steady input file for the
single block C-grid 2D airfoil. Highlighted
sections are the blocking and boundary
condition input:

input/output files:
grid.bin
plot3dg.bin
plot3dq.bin
cfl3d.out
cfl3d.res
cfl3d.turres
cfl3d.blomax
cfl3d.out15
cfl3d.prout
cfl3d.out20
ovrlp.bin
patch.bin
restart.bin

NLR7301 airfoil, cfl3d type grid
Xmach alpha beta ReUe Tinf,dR ialph ihstry

0.753 1.10 0.0 5.7567 460.0 0 0
sref cref bref xmc ymc zmc
1.0 1.0 1.0 0.075 0.0 0.0
dt irest iflagts fmax iunst cfl_tau

-2.0 0 0 1.0 0 5.0

ngrid nplot3d nprint nwrest ichk i2d ntstep ita
1 1 1 1000 0 1 1 -2

ncg iem iadvance iforce ivisc(i) ivisc(j) ivisc(k)
2 0 0 1 0 0 5

idim jdim kdim
2 273 93

ilamlo ilamhi jlamlo jlamhi klamlo klamhi
0 0 0 0 0 0

inewg igridc is js ks ie je ke
0 0 0 0 0 0 0 0

idiag(i) idiag(j) idiag(k) iflim(i) iflim(j) iflim(k)
1 1 1 4 4 4

ifds(i) ifds(j) ifds(k) rkap0(i) rkap0(j) rkap0(k)
1 1 1 0.3333 0.3333 0.3333

grid nbci0 nbcidim nbcj0 nbcjdim nbck0 nbckdim iovrlp
1 1 1 1 1 3 1 0

i0: grid segment bctype jsta jend ksta kend ndata
1 1 1002 0 0 0 0 0

idim:grid segment bctype jsta jend ksta kend ndata
1 1 1002 0 0 0 0 0

j0: grid segment bctype ista iend ksta kend ndata
1 1 1003 0 0 0 0 0

jdim:grid segment bctype ista iend ksta kend ndata
1 1 1003 0 0 0 0 0

k0: grid segment bctype ista iend jsta jend ndata
1 1 0 0 0 0 1 37 0
1 2 2004 0 0 0 37 237 2

tw/tinf cq
0. 0.
1 3 0 0 0 237 273 0

Boundary
conditions

40

Problem Formulation and Setup
Blocking and boundary conditions

kdim:grid segment bctype ista iend jsta jend ndata
1 1 1003 0 0 0 0 0

mseq mgflag iconsf mtt ngam
1 1 0 0 2

issc epsssc(1) epsssc(2) epsssc(3) issr epsssr(1) epsssr(2) epsssr(3)
0 0.3 0.3 0.3 0 0.3 0.3 0.3

ncyc mglevg nemgl nitfo
2000 3 0 0

mit1 mit2 mit3 mit4 mit5 ...
1 1 1

1-1 blocking data:
nbli

1
number grid ista jsta ksta iend jend kend isva1 isva2

1 1 1 1 1 2 37 1 1 2
number grid ista jsta ksta iend jend kend isva1 isva2

1 1 1 273 1 2 237 1 1 2
patch interface data:

ninter
0

plot3d output:
grid iptyp ista iend iinc jsta jend jinc ksta kend kinc

1 0 1 1 1 1 999 1 1 999 1
movie

0
print out:

grid iptyp ista iend iinc jsta jend jinc ksta kend kinc
1 0 1 1 1 1 999 1 1 999 1

control surfaces
ncs

0
grid ista iend jsta jend ksta kend iwall inorm

Blocking
data

41

Problem Formulation and Setup
Blocking and boundary conditions

For this example, format of the blocking data in the input file:

1-1 blocking data:
nbli

1
number grid ista jsta ksta iend jend kend isva1 isva2

1 1 1 1 1 2 37 1 1 2
number grid ista jsta ksta iend jend kend isva1 isva2

1 1 1 273 1 2 237 1 1 2

Number of the blocking data line

Number of the block (in the present
example there is only 1 block)

Number of lines of blocking data
No. of lines
in each data
must equal nbli

Note: The text cards must be present, but the text within those lines
is arbitrary, and is for user information only. All lines with data are in free
field format throughout the input file.

42

Problem Formulation and Setup
Blocking and boundary conditions

Blocking data
1-1 blocking data:

nbli
1

number grid ista jsta ksta iend jend kend isva1 isva2
1 1 1 1 1 2 37 1 1 2

number grid ista jsta ksta iend jend kend isva1 isva2
1 1 1 273 1 2 237 1 1 2

j – start
indices

j – end
indices

i – start
indices

i – end
indices

Because this is a volume grid, the blocking will
always define a two-dimensional interface in index
space

First index variation
on both sides is in the
i-direction

Second index variation
on both sides is in the
j-direction

43

Problem Formulation and Setup
Blocking and boundary conditions

Consider a second example of a 2D airfoil using two blocks to compose a
C-grid. Block 1 has dimensions 2x93x5. Block 2 has dimensions 2x269x93

j=1j=33
(t.e.)

j=233
(t.e.)

j=
269

Block boundary
k=1k=5

j=
265

j=
265

Block 1

Block 2

44

Problem Formulation and Setup
Blocking and boundary conditions

Blocking data

1-1 blocking data:

nbli
3

number grid ista jsta ksta iend jend kend isva1 isva2
1 1 1 1 1 2 1 5 1 3
2 2 1 1 1 2 33 1 1 2
3 1 1 1 1 2 97 1 1 2

number grid ista jsta ksta iend jend kend isva1 isva2
1 2 1 269 1 2 265 1 1 2
2 2 1 265 1 2 233 1 1 2
3 2 1 1 1 2 1 97 1 3

3 blocking data
sets now

k-index of
block 1 now
varies with
the j-index of
block 2

A new blocking boundary appears that previously did
not exist

45

Problem Formulation and Setup
Blocking and boundary conditions

Blocking faces require corresponding boundary condition data

In the first example above, the blocking interface is at the k=1 boundary.
Therefore, the boundary condition data for that blocking interface is in the
‘k0’ boundary data.

k0: grid segment bctype ista iend jsta jend ndata
1 1 0 1 2 1 37 0

.

.

.
1 3 0 1 2 237 273 0

Boundary condition type
for a blocking interface is 0

46

Problem Formulation and Setup
Blocking and boundary conditions

CFL3D will stop if the number of grid points across a blocking
interfaces does not match.

Suppose the following blocking data had been specified for example 1 above:

number grid ista jsta ksta iend jend kend isva1 isva2
1 1 1 1 1 2 35 1 1 2

number grid ista jsta ksta iend jend kend isva1 isva2
1 1 1 273 1 2 237 1 1 2

Execution will terminate with the following error message at the end of the file
‘precfl3d.out’:

.

.
the limits of ind2 are not the same for both sides for 1:1 plane 1

Erroneous
jend value

47

Problem Formulation and Setup
Blocking and boundary conditions

CFL3D also checks the input connection data by computing the geometric
mismatch between both sides of the interface. A true 1-1 interface will have
zero (machine zero) mismatch. Any mismatches larger than ε (where ε is
the larger of 10-9 or 10x(machine zero)) will cause a warning message.

Example of the output in ‘cfl3d.out’:

j= 1 1-1 blocking type 0 i= 1, 31 k=137, 69
connects to j = 1 of block 2
blocking check....geometric mismatch = 0.2166272E-03

48

Problem Formulation and Setup
Blocking and boundary conditions

Example of possible boundary condition segments on the k0 face. Suppose
that the k0 face below represents the surface of a wing.

j=4

j=1
i=5i=1

49

Problem Formulation and Setup
Blocking and boundary conditions

At the unshaded cells, it is desired to apply a heated wall boundary condition, while at
the shaded cells it is desired to apply an adiabatic wall boundary condition. One way
to accomplish this objective is to divide the boundary into the segments shown. The
CFL3D input file would have input that looks like this:

k0: grid segment bctype ista iend jsta jend ndata
1 1 2004 1 5 1 2 2

tw/tinf cq
1.60000 0.00000

1 2 2004 1 3 2 4 2
tw/tinf cq

1.60000 0.00000
1 3 2004 3 5 2 4 2

tw/tinf cq
0.00000 0.00000

Note that for segment 1, for instance, the grid points i = 1 to 5, j = 1 to 2 define the
boundary of the cells at which the condition type is to be applied.

j=1

j=4

i=1 i=5

Segment 1

Segment 2 Segment 3

50

Problem Formulation and Setup
Blocking and boundary conditions

Setting ista = iend = 0 and/or jsta = jend = 0 is a shorthand way of specifying the entire
range. In other words, an alternate boundary condition input with identical outcome
is:

k0: grid segment bctype ista iend jsta jend ndata
1 1 2004 0 0 1 2 2

tw/tinf cq
1.60000 0.00000

1 2 2004 1 3 2 4 2
tw/tinf cq

1.60000 0.00000
1 3 2004 3 5 2 4 2

tw/tinf cq
0.00000 0.00000

j=1

j=4

i=1 i=5

Segment 1

Segment 2 Segment 3

51

Problem Formulation and Setup
Blocking and boundary conditions

The following 1000 series boundary conditions are available:

bctype boundary condition
1000 free stream
1001 general symmetry plane
1002 extrapolation
1003 inflow/outflow
1005 inviscid surface
1006 inviscid surface (using normal momentum)
1008 tunnel inflow
1011 singular axis – half-plane symmetry
1012 singular axis – full plane
1013 singular axis – partial plane

Refer to the Version 5.0 Manual and Version 6.0 web page for more information on these
boundary conditions

52

Problem Formulation and Setup
Blocking and boundary conditions

The following 2000 series boundary conditions are available:

bctype boundary condition
2002 specified pressure ratio
2003 inflow with specified total conditions
2004 no-slip wall
2005 periodic in space
2006 set pressure to satisfy the radial equilibrium equation
2007 set all primitive variables

Refer to the Version 5.0 Manual and Version 6.0 web page for more information on these
boundary conditions

53

Problem Formulation and Setup
Blocking and boundary conditions

The following 2000 series boundary conditions are available:

bctype boundary condition
2008 user specifies density and velocity components,

pressure extrapolated from interior
2009 sets total p and total T inflow, pressure extrapolated from

interior
2014 user specifies transpiration through the boundary
2018 user specifies temperature and momentum components,

pressure extrapolated from interior
2028 user specifies frequency and maximum momentum

components, density and pressure extrapolated
2102 pressure ratio specified as a sinusoidal function of time

Refer to the Version 5.0 Manual and Version 6.0 web page for more information on these
boundary conditions

54

Problem Formulation and Setup
Blocking and boundary conditions

Boundary condition 1000 - Free stream. Extrapolation points just outside the
boundary are set to initial free stream values, which are:

γρ

βα
β

βα
ρ

/

cossin
sin

coscos
0.1

2
initialinitialinitial

initial

initial

initial

initial

ap

Mw
Mv

Mu

=

=
−=

=
=

∞

∞

∞

55

Problem Formulation and Setup
Blocking and boundary conditions

Boundary condition 1001 - General symmetry plane. Suppose we wish to
simulate a 3D wing using the half wing shown. If only one type of maneuver is
performed (i.e. about x-y plane, x-z plane or y-z plane only) the symmetry plane
boundary condition can be used.

General symmetry
plane

56

Problem Formulation and Setup
Blocking and boundary conditions

Boundary condition 1002 - Extrapolation. Ghost points outside the flow field
domain are extrapolated from the interior.

Boundary condition 1003 - Inflow/Outflow. This condition uses Riemann
invariants to calculate inflow and outflow at the boundary cell face. It effectively
Sets total pressure.

Boundary condition 1005 - Inviscid surface. Velocity components normal to the
Surface are set to zero. Density and pressure gradients are set to zero.

Boundary condition 1006 - Inviscid surface. Similar to b.c. 1005 except that the
Normal momentum equation is used to obtain wall pressure. Generally results in
a smoother solution near an inviscid surface.

Boundary condition 2004 - No slip wall. Viscous boundary conditions are set at
Surface cell face, i.e. V = 0.

57

Problem Formulation and Setup
Example of typical “outer” boundary conditions

Inflow/outflow, 1003

Inflow/outflow, 1003

extrapolation, 1002

58

Problem Formulation and Setup
Blocking and boundary conditions

Boundary condition 1005: Inviscid surface

.

.

.
i0: grid segment bctype ista iend jsta jend ndata

1 1 1005 1 5 1 2 0
1 2 0 1 3 2 4 0

idim:grid segment bctype ista iend jsta jend ndata
.
.
.

59

Problem Formulation and Setup
Blocking and boundary conditions

Note that the b.c. 1005 has no auxiliary data, while the b.c. 2004 has two
additional lines

.

.
k0: grid segment bctype ista iend jsta jend ndata

1 1 1005 1 5 1 2 0
.
.

…versus…
.
.

k0: grid segment bctype ista iend jsta jend ndata
1 1 2004 1 5 1 2 2

tw/tinf cq

1.60000 0.00000

Specifies no
additional data
entries

Specifies two
additional auxiliary
data entries

60

Problem Formulation and Setup
Blocking and boundary conditions

• Series 1000 boundary conditions require no auxiliary data
• Number of auxiliary data entries for series 2000 boundary conditions

are shown below

b.c. type No. of auxiliary
data

2002 1
2003 5
2004 2
2005 5
2006 4
2007 5*
2008 4*
2009 4*
2014 3
2016 7
2018 4*
2028 4*
2102 4

* Means turbulence data can also be specified, adding either 1 or 2 additional aux. data inputs

See the CFL3D version 5.0 manual and CFL3D Version 6 web page for
discussion of these boundary conditions

61

Problem Formulation and Setup
Blocking and boundary conditions

Example of a boundary condition with 5 auxiliary data entries: 2003 -
“Engine inflow”, inflow with specified total conditions:

.

.
k0: grid segment bctype ista iend jsta jend ndata

1 1 2003 1 5 1 2 5
Mach Pt/Pinf Tt/Tinf Alphae Betae
0.30 4.000 1.1755 0.0 0.0

.

.

62

Problem Formulation and Setup
Blocking and boundary conditions

Input data so far for the 2D airfoil using a single block C-grid
.
.
.

grid nbci0 nbcidim nbcj0 nbcjdim nbck0 nbckdim iovrlp
1 1 1 1 1 3 1 0

i0: grid segment bctype jsta jend ksta kend ndata
1 1 1002 0 0 0 0 0

idim: grid segment bctype jsta jend ksta kend ndata
1 1 1002 0 0 0 0 0

j0: grid segment bctype ista iend ksta kend ndata
1 1 1003 0 0 0 0 0

jdim: grid segment bctype ista iend ksta kend ndata
1 1 1003 0 0 0 0 0

k0: grid segment bctype ista iend jsta jend ndata
1 1 0 0 0 1 37 0
1 2 2004 0 0 37 237 2

tw/tinf cq
0. 0.
1 3 0 0 0 237 273 0

kdim: grid segment bctype ista iend jsta jend ndata
1 1 1003 0 0 0 0 0

.

.

.
1-1 blocking data:

nbli
1

number grid ista jsta ksta iend jend kend isva1 isva2
1 1 1 1 1 2 37 1 1 2

number grid ista jsta ksta iend jend kend isva1 isva2
1 1 1 273 1 2 237 1 1 2

.

.

Boundary condition
data

Blocking data

i-boundary data

j-boundary data

k-boundary data

Number of k0
segments

63

Setting up a Steady Run
Input/output file specifications

input/output files:
grid.bin
plot3dg.bin
plot3dq.bin
cfl3d.out
cfl3d.res
cfl3d.turres
cfl3d.blomax
cfl3d.out15
cfl3d.prout
cfl3d.out20
ovrlp.bin
patch.bin
restart.bin

Grid file (Input) (Unit 1)

Plot3D output for the grid and q-array (Units 3 and 4)

Main CFL3D output (Unit 11)
Flow field residual history
Turbulence model residual history

Flow field, flow field and surface data print out file

Restart file (Input and Output) (Unit 2)

Some of the key input, output files:

64

Setting up a Steady Run
Input/output file specifications

• These names can be changed by the user.
• Input/output redirects are permitted. (e.g. ../../grid.bin or

./cflout/cfl3d.out)
• Additional files are printed out not contained in this list. (e.g.

precfl3d.out, precfl3d.error, cfl3d.error, cfl3d.subit_res and
cfl3d.subit_turres) These files cannot be renamed or redirected

• The restart file name that is read at the start of the computation is
the same name used for output at the end. Scripting that saves
restart files to another name will be required if the user wishes to
save the input restart.

65

Setting up a Steady Run
Navigating diagnostic output

Diagnostic output:
• Initial input syntax and completeness are checked in the

preprocessor ‘precfl3d’. This is an initial step automatically
performed by CFL3D. Output from this check will be in the
files ‘precfl3d.error’ and ‘precfl3d.out’. Input errors will cause
the output in ‘precfl3d.out’ to stop at the line at which the error
occurred. Often informative diagnostics will be output there.

• When the checker ‘precfl3d’ has determined that the input is
properly configured, the top of ‘cfl3d.out’ will show the input
values it has read.

• Other checks (e.g. grid dimension, blocking, incompatibility of
a restart file) are performed in ‘cfl3d’. Error output including
the suspected cause of the termination will be found in
‘cfl3d.error’. Sometimes additional insight into the cause of
the error can be found by checking the main output in
‘cfl3d.out’ although frequently there is little additional
diagnostic output in ‘cfl3d.out’ if the code terminates.

66

Setting up a Steady Run
Title line and condition data

input/output files:
grid.bin
plot3dg.bin
plot3dq.bin
cfl3d.out
cfl3d.res
cfl3d.turres
cfl3d.blomax
cfl3d.out15
cfl3d.prout
cfl3d.out20
ovrlp.bin
patch.bin
restart.bin

NLR7301 airfoil, cfl3d type grid
Xmach alpha beta ReUe Tinf,dR ialph ihstry
0.753 1.10 0.0 5.7567 460.0 0 0

sref cref bref xmc ymc zmc
1.0 1.0 1.0 0.075 0.0 0.0

dt irest iflagts fmax iunst cfl_tau
-2.0 0 0 1.0 0 5.0

ngrid nplot3d nprint nwrest ichk i2d ntstep ita
1 1 1 1000 0 1 1 -2

ncg iem iadvance iforce ivisc(i) ivisc(j) ivisc(k)
2 0 0 1 0 0 5

idim jdim kdim
2 273 93

ilamlo ilamhi jlamlo jlamhi klamlo klamhi
0 0 0 0 0 0

inewg igridc is js ks ie je ke
0 0 0 0 0 0 0 0

idiag(i) idiag(j) idiag(k) iflim(i) iflim(j) iflim(k)
1 1 1 4 4 4

ifds(i) ifds(j) ifds(k) rkap0(i) rkap0(j) rkap0(k)
1 1 1 0.3333 0.3333 0.3333

grid nbci0 nbcidim nbcj0 nbcjdim nbck0 nbckdim iovrlp
1 1 1 1 1 3 1 0

i0: grid segment bctype jsta jend ksta kend ndata
1 1 1002 0 0 0 0 0

idim:grid segment bctype jsta jend ksta kend ndata
1 1 1002 0 0 0 0 0

j0: grid segment bctype ista iend ksta kend ndata
1 1 1003 0 0 0 0 0

jdim:grid segment bctype ista iend ksta kend ndata
1 1 1003 0 0 0 0 0

k0: grid segment bctype ista iend jsta jend ndata
1 1 0 0 0 0 1 37 0
1 2 2004 0 0 0 37 237 2

tw/tinf cq
0. 0.
1 3 0 0 0 237 273 0

We will now
focus on these
and subsequent
lines

67

Setting up a Steady Run
Title line and condition data

NLR7301 airfoil, cfl3d type C-grid
Xmach alpha beta ReUe Tinf,dR ialph ihstry
0.753 1.10 0.0 5.7567 460.0 0 0

Condition title line

Condition data
line

Free-stream
temperature,
degrees Rankine

ialph – indicator to determine whether angle of attack is measured in the
x-z plane or the x-y plane

ihstry – determines which variables are to be tracked for
convergence history. Default is Cl, Cd, Cy (or Cz), Cm.

Input of ReUe (Reynolds number) requires some additional explanation….

Angle of attack, Deg.

Sideslip, Deg.

68

Setting up a Steady Run
Calculation of Reue

Reference lengthRecall the nondimensionalizations:

∞∞∞∞

∞

====

====

a
ww

a
vv

a
uu

L
att

L
zz

L
yy

L
xx

RRRR

~
~

~
~

~
~

~
~

~
~~

~
~

~
~

~
~

ρ
ρρ

Reynolds number based on reference length:

∞

∞∞
=

µ

ρ
~

~~~
Re ~

R

L

LV
R



69

Setting up a Steady Run
Calculation of Reue

Calculation of Reue

666
~ 10~

~~
10~

~~~
10Re −

∞

∞∞∞−

∞

∞∞− ×=×=×
µ

γρ
µ

ρ
RR

L

LRTMLV
R

Reue =

Example: Suppose we have a grid that is in inches, and we wish to retain that
length scale so that the grid remains compatible with a finite element
model of the wing structure that is also in inches. Suppose the
Reynolds number is 1 million based on chord length of 20 inches.

Set , then Reue 05.,000,50)/~(ReRe1~
~ ==== cLinchL RcLR R

Reue is the Reynolds number per unit grid length in millions

70

Setting up a Steady Run
Reference data input

sref cref bref xmc ymc zmc
1.0 1.0 1.0 0.075 0.0 0.0

Reference area used
in calculation of force
coefficients, in grid
units

Reference length used
in calculation of pitch
moment coefficient, in
grid units

Reference length used
in calculation of roll
moment coefficient, in
grid units

Center for moment
calculations, in grid units

71

Setting up a Steady Run
Steady solution cycling input

input/output files:
grid.bin
plot3dg.bin
plot3dq.bin
cfl3d.out
cfl3d.res
cfl3d.turres
cfl3d.blomax
cfl3d.out15
cfl3d.prout
cfl3d.out20
ovrlp.bin
patch.bin
restart.bin

NLR7301 airfoil, cfl3d type grid
Xmach alpha beta ReUe Tinf,dR ialph ihstry

0.753 1.10 0.0 5.7567 460.0 0 0
sref cref bref xmc ymc zmc
1.0 1.0 1.0 0.075 0.0 0.0
dt irest iflagts fmax iunst cfl_tau

-2.0 0 0 1.0 0 5.0

ngrid nplot3d nprint nwrest ichk i2d ntstep ita
1 1 1 1000 0 1 1 -2

ncg iem iadvance iforce ivisc(i) ivisc(j) ivisc(k)
2 0 0 1 0 0 5

idim jdim kdim
2 273 93

ilamlo ilamhi jlamlo jlamhi klamlo klamhi
0 0 0 0 0 0

inewg igridc is js ks ie je ke
0 0 0 0 0 0 0 0

idiag(i) idiag(j) idiag(k) iflim(i) iflim(j) iflim(k)
1 1 1 4 4 4

ifds(i) ifds(j) ifds(k) rkap0(i) rkap0(j) rkap0(k)
1 1 1 0.3333 0.3333 0.3333

.

.

.

mseq mgflag iconsf mtt ngam
1 1 0 0 2

issc epsssc(1) epsssc(2) epsssc(3) issr epsssr(1) epsssr(2) epsssr(3)
0 0.3 0.3 0.3 0 0.3 0.3 0.3

ncyc mglevg nemgl nitfo
2000 3 0 0
mit1 mit2 mit3 mit4 mit5 ...

1 1 1

We will now want to
focus on these
three lines

72

Setting up a Steady Run
Steady solution cycling input

Time step parameters:

dt irest iflagts fmax iunst cfl_tau
-2.0 0 0 1.0 0 5.0

Number of time step advances, and time accuracy:

ngrid nplot3d nprint nwrest ichk i2d ntstep ita
1 1 1 1000 0 1 1 -2

Cycle control:

ncyc mglevg nemgl nitfo
2000 3 0 0

CFL number
(for steady run)

Number of
time stepsNumber of cycles

73

Setting up a Steady Run
Steady solution cycling input

dt irest iflagts fmax iunst cfl_tau
-2.0 0 0 1.0 0 5.0

.

.
ngrid nplot3d nprint nwrest ichk i2d ntstep ita

1 1 1 1000 0 1 1 -2
.
.

ncyc mglevg nemgl nitfo
2000 3 0 0

Note:
– when dt < 0, local time stepping is used, i.e. . This is used

for converging a steady state solution. For steady state computations

where ∆r is a measure of local grid spacing and ∆τ is the local pseudo
time step size.

– cfl_tau is not used when dt < 0. The value input for that parameter is a placeholder.
– iunst is set to 0 in the code when dt < 0.
– ntstep is set to 1 in the code when dt < 0.
– ncyc controls the number of steady solution cycles computed.
– Values of dt of -2.0 to -10.0 are typical. Lower values will be required for a

stiffer problem.

dtCFL =

rCFL ∆⋅=∆τ

74

Setting up a Steady Run
Grid sequencing

Grid sequencing can and should be used to accelerate convergence to a
steady state solution. The following input sequences through three grid levels.

.

.
ncg iem iadvance iforce ivisc(i) ivisc(j) ivisc(k)

2 0 0 1 0 0 5

.

.

.
mseq mgflag iconsf mtt ngam

3 1 0 0 2
issc epsssc(1) epsssc(2) epsssc(3) issr epsssr(1) epsssr(2) epsssr(3)

0 0.3 0.3 0.3 0 0.3 0.3 0.3
ncyc mglevg nemgl nitfo
2000 1 0 0
1000 2 0 0
500 3 0 0
mit1 mit2 mit3 mit4 mit5 ...

1
1 1
1 1 1

.

.

.

Sequencing from coarsest
to finest grid level, mseq
lines required

Number of sequence levels

mseq lines required

Number of coarser levels to be created

75

Setting up a Steady Run
Grid sequencing output

The following grid level information will be found
in the cfl3d.out on the completion of the 3D
single block C-grid airfoil computation:

.
.

reading grid 1 of dimensions (I/J/K) : 2 273 93
creating coarser block 2 of dimensions (I/J/K) : 2 137 47
creating coarser block 3 of dimensions (I/J/K) : 2 69 24

.

.

.
***** BEGINNING TIME ADVANCEMENT, iseq = 1 *****

steady-state computations

***** BEGINNING MULTIGRID CYCLE *****

iseq= 1
level top = 1
level bottom = 1
number of global grid levels = 1
lglobal= 1

.

.

.

.

.

.

***** BEGINNING SEQUENCING TO FINER LEVEL *****

interpolating solution on coarser block 3 to finer block 2 (grid 1)
jdim,kdim,idim (finer grid)= 137 47 2
jj2,kk2,ii2 (coarser grid)= 69 24 2
interpolating turb quantities from coarser to finer block

***** ENDING SEQUENCING TO FINER LEVEL *****

***** BEGINNING TIME ADVANCEMENT, iseq = 2 *****

steady-state computations

***** BEGINNING MULTIGRID CYCLE *****

iseq= 2
level top = 2
level bottom = 1
number of global grid levels = 2
lglobal= 2

.

.

.

Coarsest to
mid level

Because ncg = 2, two
coarser levels created

76

Setting up a Steady Run
Grid sequencing output

.

.

.

***** BEGINNING SEQUENCING TO FINER LEVEL *****

interpolating solution on coarser block 2 to finer block 1 (grid 1)
jdim,kdim,idim (finer grid)= 273 93 2
jj2,kk2,ii2 (coarser grid)= 137 47 2
interpolating turb quantities from coarser to finer block

***** ENDING SEQUENCING TO FINER LEVEL *****

***** BEGINNING TIME ADVANCEMENT, iseq = 3 *****

steady-state computations

***** BEGINNING MULTIGRID CYCLE *****

iseq= 3
level top = 3
level bottom = 1
number of global grid levels = 3
lglobal= 3

Mid to finest level

77

Setting up a Steady Run
Grid sequencing

ncg iem iadvance iforce ivisc(i) ivisc(j) ivisc(k)
2 0 0 1 0 0 5

.

.
idim jdim kdim

2 273 93
.
.

.
mseq mgflag iconsf mtt ngam

3 1 0 0 2
issc epsssc(1) epsssc(2) epsssc(3) issr epsssr(1) epsssr(2) epsssr(3)

0 0.3 0.3 0.3 0 0.3 0.3 0.3
ncyc mglevg nemgl nitfo

2000 1 0 0
1000 2 0 0

500 3 0 0
mit1 mit2 mit3 mit4 mit5 ...

1
1 1
1 1 1

Note:
– The number of grid levels that will have been created are the coarser levels (ncg) plus the

finest level. Therefore, mseq must be equal to or less than ncg + 1. Setting mseq higher than
this will result in a termination and an error message in precfl3d.out.

– The permissible value of ncg will depend on the dimensions of the grid. It is usually good to
have three to four possible levels of multi-grid. For example, since four levels of multi-grid
are possible with this grid, we could have set ncg = 3.

These dimensions support up to
four multigrid levels. See version 5.0
manual for a table of multigridable
dimensions. Note that idim is not
multigridded for a 2D grid.

78

Setting up a Steady Run
Grid sequencing

Note:
– Many more cycles will be done at the coarser levels. The

computing required for a 3D grid will be a factor of 8 cheaper at
each coarser level. For the present problem, the coarsest level
would be 64 times cheaper than the finest level if this had been a
3D grid. Since it is a 2D grid it will be 16 times cheaper.

– It is usually good to completely converge the coarser levels
before proceeding to the finer level. However, some problems
will not compute well at a coarse level, but will compute at a finer
level.

– Mglevg is always starting from the finest level … as the following
example will show…

79

Setting up a Steady Run
Grid sequencing

Example: We wish to compute on only the two coarser levels with the
grid used in the previous example. The following input has been set up:

.

.
ncg iem iadvance iforce ivisc(i) ivisc(j) ivisc(k)

2 0 0 1 0 0 5

.

.

.
mseq mgflag iconsf mtt ngam

2 1 0 0 2
issc epsssc(1) epsssc(2) epsssc(3) issr epsssr(1) epsssr(2) epsssr(3)

0 0.3 0.3 0.3 0 0.3 0.3 0.3
ncyc mglevg nemgl nitfo
2000 1 0 0
1000 2 0 0
mit1 mit2 mit3 mit4 mit5 ...

1
1 1

.

.

.

Value of ncg is unchanged, but
now set mseq = 2

You would expect this to
compute on the two coarsest
levels, but it actually computes
on the second and finest levels…

80

Setting up a Steady Run
Grid sequencing

…Here is what is actually output in cfl3d.out:

***** BEGINNING TIME ADVANCEMENT, iseq = 1 *****

steady-state computations

***** BEGINNING MULTIGRID CYCLE *****

iseq= 1
level top = 2
level bottom = 2
number of global grid levels = 1
lglobal= 2

.

.

.

***** BEGINNING SEQUENCING TO FINER LEVEL *****

interpolating solution on coarser block 2 to finer block 1 (grid 1)
jdim,kdim,idim (finer grid)= 273 93 2
jj2,kk2,ii2 (coarser grid)= 137 47 2
interpolating turb quantities from coarser to finer block

***** ENDING SEQUENCING TO FINER LEVEL *****

***** BEGINNING TIME ADVANCEMENT, iseq = 2 *****

steady-state computations

***** BEGINNING MULTIGRID CYCLE *****

iseq= 2
level top = 3
level bottom = 2
number of global grid levels = 2
lglobal= 3

Computations performed on the
middle and finest grids

81

Setting up a Steady Run
Grid sequencing at coarsest levels only

Here is how to compute only on the two coarsest levels:
.
.

ncg iem iadvance iforce ivisc(i) ivisc(j) ivisc(k)
2 0 0 1 0 0 5

.

.

.
mseq mgflag iconsf mtt ngam

3 1 0 0 2
issc epsssc(1) epsssc(2) epsssc(3) issr epsssr(1) epsssr(2) epsssr(3)

0 0.3 0.3 0.3 0 0.3 0.3 0.3
ncyc mglevg nemgl nitfo
2000 1 0 0
1000 2 0 0

0 3 0 0
mit1 mit2 mit3 mit4 mit5 ...

1
1 1
1 1 1

.

.

.

The finest level is included but with
zero cycles

82

Setting up a Steady Run
Grid sequencing at coarsest levels only

….and here is the output:
***** BEGINNING TIME ADVANCEMENT, iseq = 1 *****

steady-state computations

***** BEGINNING MULTIGRID CYCLE *****

iseq= 1
level top = 1
level bottom = 1
number of global grid levels = 1
lglobal= 1

.

.

.

***** BEGINNING SEQUENCING TO FINER LEVEL *****

interpolating solution on coarser block 3 to finer block 2 (grid 1)
jdim,kdim,idim (finer grid)= 137 47 2
jj2,kk2,ii2 (coarser grid)= 69 24 2
interpolating turb quantities from coarser to finer block

***** ENDING SEQUENCING TO FINER LEVEL *****

***** BEGINNING TIME ADVANCEMENT, iseq = 2 *****

steady-state computations

***** BEGINNING MULTIGRID CYCLE *****

iseq= 2
level top = 2
level bottom = 1
number of global grid levels = 2
lglobal= 2

Computations performed on the
coarsest and middle levels

83

Setting up a Steady Run
Grid sequencing at coarsest levels only

Why is it sometimes valuable to compute on
the coarser levels only?

– Cost effectiveness of coarser levels
– Sometimes it is not possible to converge the finest level
– Many times you will want to compute unsteady solutions on

coarser levels only, especially when debugging. This requires
the coarser level as the steady starting point.

84

Setting up a Steady Run
Ramping up dt

Sometimes it is useful for stiff problems to ramp up the
time step size. This is accomplished with the following input:

dt irest iflagts fmax iunst cfl_tau
-2.0 0 1000 5.0 0 5.0

dtending = fmax * dtinitial

dtinitial

In this example, the final CFL value of 10 is obtained after 1000 cycles. Note
that this counter is reset with each restart. Therefore, dtinitial will have to be
reset to the dtending of the previous run.

No. of cycles over which time step ramping
occurs

85

Setting up a Steady Run
Additional input

dt irest iflagts fmax iunst cfl_tau
-2.0 0 1000 5.0 0 5.0

ngrid nplot3d nprint nwrest ichk i2d ntstep ita
1 1 1 1000 0 1 1 -2

irest = 0 - do not read restart
irest = 1 - read restart file

No. of cycles (or time steps)
between restart file writes

No. of grid blocks to be
read from the grid file

Controls checks for
negative values.
Usually set to 0.

i2d = 0 - 3D case
i2d = 1 - 2D case
i2d =-1 - 2D case with

far-field vortex
correction

Parameter controlling
accuracy of unsteady
solution

86

Setting up a Steady Run
Additional input

ncg iem iadvance iforce ivisc(i) ivisc(j) ivisc(k)
2 0 0 1 0 0 5

idim jdim kdim
2 273 93

This card repeated ngrid times

This card repeated ngrid times

Parameters controlling
level of turbulence modeling
in the i, j, k directions

Flag for residual/update
usually set to 0

Flag controlling force computations on block
Faces. Format is IJK, e.g. 100 calculates force
On solid i=1 surfaces, 10 calculates force on solid
j=1 surfaces, etc…. See version 5 manual for more

Embedded mesh
flag, usually 0

87

Setting up a Steady Run
Turbulence model input

There are more than 13 turbulence models available, but these are the
most common turbulence model parameter values:

0 - inviscid
1 - laminar
3 - turbulent, Baldwin-Lomax with Degani-Schiff

option (not recommended)
5 - turbulent, Spalart-Allmaras model
6 - turbulent, Wilcox k-ω
7 - turbulent, k-ω SST (Menter’s version)

13 - nonlinear EASM k-ε model
14 - nonlinear EASM k-ω model

See the CFL3D Version 5.0 manual (Appendix H) and the CFL3D Version 6 web page
(under `New Features’) for descriptions of these and other models. See also under the
‘Keywords’ discussion in these notes for parameters that turn turbulence model features on.

88

Setting up a Steady Run
Turbulence model

Several key notes on turbulence models:

1. If ivisc(m) < 0, a wall function is employed
2. Thin-layer viscous terms (laminar or turbulent) can be included in the i,j or k

directions separately or combined. Cross-derivatives are not included. For the
Baldwin-Lomax model, terms are allowed simultaneously in two directions only,
either j-k or i-k.

3. Using the Baldwin-Lomax model with multi-zonal grids, wall distances are
calculated only within a given zone.

4. It is preferable to let k be the primary viscous direction and i be secondary viscous
direction.

5. The minimum distance function smin is computed from viscous walls only, not
inviscid walls.

89

Setting up a Steady Run
Turbulence model

6. Note that the field equation turbulence models may or may not transition to
turbulent flow. Whether they transition will largely be determined by the free
stream value of turbulence. Free stream turbulence level can be set in the
key word input.

7. There are several places in which the turbulence level can be checked
– There is an option allows the output of turbulence quantities in the

plot3d file.
– The file ‘cfl3d.prout’ contains the value of the turbulent viscosity. This is

shown in the next slide.

See the CFL3D User’s Manual, Version 5.0, Section 3.7 for more complete discussion

90

Setting up a Steady Run
Turbulence model output

The top of the ‘cfl3d.prout’ file is shown here:

NASA Langley BACT Model: NACA 0012 af, AR=1.5 wing,.75TE Flap
Mach alpha beta ReUe Tinf,dR time

0.82000 0.00000 0.00000 0.236E+07 486.00000 0.03839

BLOCK 1 (GRID 1) IDIM,JDIM,KDIM= 73 345 73
NOTE: endpts may not be reliable

I J K X Y Z U/Uinf V/Vinf W/Winf P/Pinf T/Tinf MACH cp tur. vis.
1 1 1 0.70000E+01 0.00000E+00 0.18698E-09 0.10000E+01 -0.38013E-18 0.72322E-13 0.10000E+01 0.10000E+01 0.82000E+00 0.50654E-07 0.90000E-02
1 2 1 0.68895E+01 0.00000E+00 0.18866E-09 0.10000E+01 -0.16458E-16 -0.14259E-15 0.10000E+01 0.10000E+01 0.82000E+00 0.50654E-07 0.90000E-02

.

.

Data lines will be printed out for all flow field points specified by the user in the
‘print out’ portion of the input file.

Turbulent viscosity

91

Setting up a Steady Run
Miscellaneous input

ilamlo ilamhi jlamlo jlamhi klamlo klamhi
0 0 0 0 0 0

inewg igridc is js ks ie je ke
0 0 0 0 0 0 0 0

Lower and upper i,j,k indices of laminar
region

This card repeated ngrid times

This card repeated ngrid times

Embedded mesh specifications. Zero if
no embedded mesh. See version 5.0
manual for more information

92

Setting up a Steady Run
Miscellaneous input

idiag(i) idiag(j) idiag(k) iflim(i) iflim(j) iflim(k)
1 1 1 4 4 4

ifds(i) ifds(j) ifds(k) rkap0(i) rkap0(j) rkap0(k)
1 1 1 0.3333 0.3333 0.3333

This card repeated ngrid times

This card repeated ngrid times

Spatial differencing
in the i,j,k directions.
ifds = 1 – flux-difference

splitting (Roe’s)
(recommended)

Spatial differencing
parameter for Euler
fluxes in the i,j,k
directions.
rkap0 = 1/3 - upwind-
biased third order
(recommended)

Flux limiter flag in the i,j,k directions.
iflim = 3 was recommended in Version 5.0
iflim = 4 is recommended in Version 6.0

93

Setting up an Unsteady Run
Input for time advancement

input/output files:
grid.bin
plot3dg.bin
plot3dq.bin
cfl3d.out
cfl3d.res
cfl3d.turres
cfl3d.blomax
cfl3d.out15
cfl3d.prout
cfl3d.out20
ovrlp.bin
patch.bin
restart.bin

NLR7301 airfoil, cfl3d type grid
Xmach alpha beta ReUe Tinf,dR ialph ihstry

0.753 1.10 0.0 5.7567 460.0 0 0
sref cref bref xmc ymc zmc
1.0 1.0 1.0 0.075 0.0 0.0
dt irest iflagts fmax iunst cfl_tau

.05 1 0 1.0 0 5.0

ngrid nplot3d nprint nwrest ichk i2d ntstep ita
1 1 1 1000 0 1 1 -2

ncg iem iadvance iforce ivisc(i) ivisc(j) ivisc(k)
2 0 0 1 0 0 5

idim jdim kdim
2 273 93

ilamlo ilamhi jlamlo jlamhi klamlo klamhi
0 0 0 0 0 0

inewg igridc is js ks ie je ke
0 0 0 0 0 0 0 0

idiag(i) idiag(j) idiag(k) iflim(i) iflim(j) iflim(k)
1 1 1 4 4 4

ifds(i) ifds(j) ifds(k) rkap0(i) rkap0(j) rkap0(k)
1 1 1 0.3333 0.3333 0.3333

.

.

.

mseq mgflag iconsf mtt ngam
1 1 0 0 2

issc epsssc(1) epsssc(2) epsssc(3) issr epsssr(1) epsssr(2) epsssr(3)
0 0.3 0.3 0.3 0 0.3 0.3 0.3

ncyc mglevg nemgl nitfo
4 3 0 0

mit1 mit2 mit3 mit4 mit5 ...
1 1 1

We will again
focus on these
three lines

94

Setting up an Unsteady Run
Input for time advancement

Time step parameters:

dt irest iflagts fmax iunst cfl_tau
.05 1 0 1.0 0 5.0

Number of time step advances, and time accuracy:

ngrid nplot3d nprint nwrest ichk i2d ntstep ita
1 1 1 1000 0 1 100 -2

Iterative control:

ncyc mglevg nemgl nitfo
4 3 0 0

Non-dimensional time step size

Number of
time steps

Number of sub-iterations

Parameter
controlling time
accuracy and
dual time stepping

95

Setting up an Unsteady Run
Input for time advancement

Order of time-accuracy, dual time scheme flag (ita)

ita = +1 First order accurate in time; physical time term only
(t-TS) method

ita = +2 Second order accurate in time; physical time term only
(t-TS) method

ita = -1 First order accurate in time; physical time and pseudo
time term (τ-TS) method

ita = -2 Second order accurate in time; physical time and
pseudo time term (τ-TS) method

96

Setting up an Unsteady Run
Input for time advancement

Note:

• The approximate factorization scheme used to advance the solution in time
introduces first order errors in time. Furthermore, if the diagonal version is
utilized (idiag = 1), additional errors of order ∆τ are introduced. Sub-iterations
can be used to drive these factorization errors to zero. Therefore, if a formally
second-order (in time) solution is desired, sub-iterations must be used.

• The inclusion of a pseudo time term increases (often dramatically) the
maximum allowable time step one can take for a particular problem. However,
sub-iterations (ncyc > 1) are therefore mandatory and multi-grid is highly
recommended.

• Larger time steps imply greater error, therefore second order is recommended.
• You will almost never want to use the t-TS method of time stepping.

97

Setting up an Unsteady Run
Equations for τ-TS time advancement

Non-dimensional
time step increment

Sub-iteration
index

)())(1(

11

11
m

nmnm

m

QR
tJ

QQ
tJ

Q
J
Q

QCBAI
tJJ

+
∆

−+
−

∆
∆

+
∆

∆′

=∆⎥
⎦

⎤
⎢
⎣

⎡
+++⎟

⎠
⎞

⎜
⎝
⎛

∆
+

+
∆

′+

−− φφ
τ

φ

δδδφ
τ
φ

ζηξ

Current time
step index

Pseudo time
step increment

98

Setting up an Unsteady Run
Equations for t-TS time advancement

The pseudo time terms are omitted for t-TS time
advancement:

)())(1(

1

1
m

nmn

m

QR
tJ

QQ
tJ

Q

QCBAI
tJ

+
∆

−+
−

∆
∆

=∆⎥
⎦

⎤
⎢
⎣

⎡
+++⎟

⎠
⎞

⎜
⎝
⎛

∆
+

− φφ

δδδφ
ζηξ

Non-dimensional
time step increment

99

Setting up an Unsteady Run
Case study: The t-TS and τ-TS schemes, oscillating spoiler

The solution using the t-TS
scheme blows up even at a
very small time step size

From: Bartels, R. E., “Mesh Strategies for Accurate
Computation of Unsteady Spoiler and Aeroelastic
Problems,” Journal of Aircraft, Vol. 37, No. 3, pp.
521-525.

100

Setting up an Unsteady Run
Speeding up execution time

idiag(i) idiag(j) idiag(k) iflim(i) iflim(j) iflim(k)
1 1 1 4 4 4

ifds(i) ifds(j) ifds(k) rkap0(i) rkap0(j) rkap0(k)
1 1 1 0.3333 0.3333 0.3333

Parameters controlling the form
of the Jacobian matrices used on
the left hand side of the equations

Setting idiag(i), idiag(j), idiag(k) to 1 results in a very efficient trigiagonal
inversion of the left hand side of the equations in the i, j and k directions.
However, be aware of the implications of setting this …..

101

Setting up an Unsteady Run
Diagonalized versus full Jacobian matrices

)())(1(

11

11
m

nmnm

m

QR
tJ

QQ
tJ

Q
J
Q

QCBAI
tJJ

+
∆

−+
−

∆
∆

+
∆

∆′

=∆⎥
⎦

⎤
⎢
⎣

⎡
+++⎟

⎠
⎞

⎜
⎝
⎛

∆
+

+
∆

′+

−− φφ
τ

φ

δδδφ
τ
φ

ζηξ

idiag controls the form of the matrices A, B, C on the
left hand side only. If idiag = 0, the full 5x5 matrix is
used. If idiag = 1, the matrix is diagonalized (i.e.
Very efficient scalar tridiagonal inversion of the left
hand side of this equation).

Since when the solution converges, setting idiag = 1 does not
affect accuracy, … assuming the solution has been adequately converged.

0→∆ mQ

102

Setting up an Unsteady Run
Sizing ∆t, number of subiterations

Recall the non-dimensionalization of time:

RL
att ~
~~

∞∆
=∆

The reference length will be determined by the grid. For instance, if
a wing with a 5 inch physical chord length is modeled with a grid that has
a non-dimensional chord length of 5, then

RL~

inchinchesLR 1
5

5~ ==

Note that in this case speed of sound, must be in inches/second.∞a~

103

Setting up an Unsteady Run
Sizing ∆t, number of subiterations

• One criteria for time step sizing is the time scale required to resolve a
phenomena at some frequency. Another is the number of time steps
for a flow field particle to pass over a chord length. Consider 100 time
steps per cycle or 100 time steps to pass over a chord length as the
absolute minimum, which ever is smaller.

• The time step size and the number of sub-iterations may have to
be set lower/higher respectively by either accuracy or robustness
requirements. Short test runs should be performed to ensure
adequate convergence.

104

Setting up an Unsteady Run
Sizing ∆t, number of subiterations

• Indicators that the time step size is too large:
• The solution converges very slowly or does not converge at all.
• The solution simply blows up.
• There are large numbers of negative turbulence parameter values

in the file ‘cfl3d.subit_turres’ the number of which is not converging toward
zero at the end of each time step.

• Indicator that the number of sub-iterations is too small:
• The force coefficients have not leveled out to an acceptable

convergence level.
• The residuals have dropped only by an insufficient magnitude. This

can also be a sign that the time step is too large.
• The solution has been converging, but eventually blows up or

starts to gradually diverge.
• Note that these symptoms can also be due to problems with the grid,

boundary conditions or turbulence model, so first ensure these issues
are settled.

105

Setting up an Unsteady Run
Sub-iterative output – checking convergence

The file ‘cfl3d.subit_res’ contains the following sub-iterative output

subit log(subres) cl cd cy cmy

1 -0.44098E+01 -0.56246E-02 0.29632E+00 0.00000E+00 0.14528E-02
2 -0.45238E+01 0.28737E-01 -0.12683E-01 0.00000E+00 -0.50177E-02
3 -0.49884E+01 0.26860E-01 0.19477E+00 0.00000E+00 -0.47901E-02
4 -0.48541E+01 0.25869E-01 0.80380E-01 0.00000E+00 -0.42342E-02
5 -0.54203E+01 0.26254E-01 0.10470E+00 0.00000E+00 -0.42906E-02
6 -0.53829E+01 0.27267E-01 0.98269E-01 0.00000E+00 -0.44789E-02
7 -0.58126E+01 0.27020E-01 0.10995E+00 0.00000E+00 -0.44088E-02
8 -0.57635E+01 0.26710E-01 0.10469E+00 0.00000E+00 -0.43687E-02
9 -0.60754E+01 0.26657E-01 0.10302E+00 0.00000E+00 -0.43724E-02

10 -0.61285E+01 0.26713E-01 0.10312E+00 0.00000E+00 -0.43877E-02
11 -0.49984E+01 0.26728E-01 0.10431E+00 0.00000E+00 -0.43800E-02
12 -0.56927E+01 0.26415E-01 0.92217E-01 0.00000E+00 -0.42151E-02
13 -0.60126E+01 0.26287E-01 0.83844E-01 0.00000E+00 -0.40628E-02
14 -0.62182E+01 0.26167E-01 0.82317E-01 0.00000E+00 -0.40236E-02
15 -0.65022E+01 0.26110E-01 0.82955E-01 0.00000E+00 -0.40152E-02
16 -0.65972E+01 0.26076E-01 0.83164E-01 0.00000E+00 -0.40164E-02
17 -0.68247E+01 0.26050E-01 0.82959E-01 0.00000E+00 -0.40162E-02
18 -0.68719E+01 0.26052E-01 0.82589E-01 0.00000E+00 -0.40151E-02
19 -0.70916E+01 0.26059E-01 0.82439E-01 0.00000E+00 -0.40141E-02
20 -0.71274E+01 0.26055E-01 0.82404E-01 0.00000E+00 -0.40133E-02

Note that all iterations are output sequentially

ncyc = 10 so there
are 10 lines output
per time step

106

Setting up an Unsteady Run
Sub-iterative output– checking convergence

Start of new time step sub-
iterations

107

Setting up an Unsteady Run
Sub-iterative output– checking convergence

Force coefficients should be
converged before start of
next time step

108

Setting up an Unsteady Run
Sub-iterative turbulence output

subit log(turres1) log(turres2) nneg1 nneg2
1 -0.73658E+01 -0.92553E+01 0 710
2 -0.74563E+01 -0.91092E+01 0 82
3 -0.76424E+01 -0.90767E+01 0 2
4 -0.80379E+01 -0.90899E+01 0 0
5 -0.82466E+01 -0.93470E+01 0 8
6 -0.84600E+01 -0.93751E+01 0 30
7 -0.86186E+01 -0.95757E+01 0 58
8 -0.88672E+01 -0.97150E+01 0 56
9 -0.89497E+01 -0.98376E+01 0 48

10 -0.91579E+01 -0.99516E+01 0 38
.
.
.
.

51 -0.95921E+01 -0.88827E+01 2498 2149
52 -0.95925E+01 -0.90172E+01 2340 2693
53 -0.95509E+01 -0.91643E+01 2124 2603
54 -0.99381E+01 -0.90386E+01 1959 1193
55 -0.98511E+01 -0.91025E+01 2244 1252
56 -0.99244E+01 -0.92361E+01 3529 1393
57 -0.10161E+02 -0.91691E+01 2373 1486
58 -0.10217E+02 -0.91525E+01 1395 1360
59 -0.10304E+02 -0.92210E+01 1266 1460
60 -0.10377E+02 -0.93327E+01 1109 1218

Note that there are a few grid
points that have negative values
of k and ω initially…

…however, large numbers of
negative values of turbulence
model parameters indicate a
potential problem

In this case
ncyc = 10 so there
are 10 turbulence
model iterations
per time step.

Even though the turbulence model appears to be converging well, a large number of
negative values may mean that the time step size is too large for the turbulence model.
Usually reducing time step size will fix this problem.

The file ‘cfl3d.subit_turres’ contains the following sub-iterative output
for Menter’s shear stress transport (SST) k-w turbulence model:

109

Setting up an Unsteady Run
Multigrid strategies

• Multigrid is a must for unsteady computations. The following input
section establishes four multigrid sub-iterations each on three levels,
the third being the finest:

mseq mgflag iconsf mtt ngam
1 1 0 0 2

issc epsssc(1) epsssc(2) epsssc(3) issr epsssr(1) epsssr(2) epsssr(3)
0 0.3 0.3 0.3 0 0.3 0.3 0.3

ncyc mglevg nemgl nitfo
4 3 0 0

mit1 mit2 mit3 mit4 mit5 ...
1 1 1

Correction and residual
smoothing, typically
not used (issc=issr=0)

Mesh sequencing and
multigrid parameters

Multigrid cycling
parameters

Number of iterations for each
level, mitL = 1 recommended

110

Setting up an Unsteady Run
Multigrid strategies

mseq mgflag iconsf mtt ngam
1 1 0 0 2

issc epsssc(1) epsssc(2) epsssc(3) issr epsssr(1) epsssr(2) epsssr(3)
0 0.3 0.3 0.3 0 0.3 0.3 0.3

ncyc mglevg nemgl nitfo
4 3 0 0

mit1 mit2 mit3 mit4 mit5 ...
1 1 1

Note:
• iconsf is a parameter for setting conservative flux treatment for embedded grids. For

most computations it is set to zero.
• mtt is a flag for additional iterations on the up portion of the multigrid. Recommend

setting to zero.
• ngam is the multigrid cycle flag. ngam = 1 sets V-cycle, ngam = 2 sets a W-cycle. The

W-cycle is not recommended for overlapped grids.
• mglevg is the number of grids to use in multigrid cycling. E.g. mglevg = 1 sets the finest

grid level only, mglevg = 2 sets two grid levels, etc…
• nemgl is set to zero when there are no embedded grids.
• nitfo1 is the number of first order iterations. Zero is recommended.

111

Setting up an Unsteady Run
Multigrid strategies

What if you want to compute an unsteady solution using multigrid on
coarser levels only? Assume that the steady starting solution has been
performed on coarser levels only, as we previously discussed. The
following input will allow you to perform the unsteady run:

mseq mgflag iconsf mtt ngam
2 1 0 0 2

issc epsssc(1) epsssc(2) epsssc(3) issr epsssr(1) epsssr(2) epsssr(3)
0 0.3 0.3 0.3 0 0.3 0.3 0.3

ncyc mglevg nemgl nitfo
4 2 0 0
0 3 0 0

mit1 mit2 mit3 mit4 mit5 ...
1 1
1 1 1

Note that a line with 0 sub-iterations
is included for a 3 level multigrid

112

Setting up an Unsteady Run
Multigrid strategies

….and here is the output:
.
.

reading grid 1 of dimensions (I/J/K) : 2 273 93
creating coarser block 2 of dimensions (I/J/K) : 2 137 47
creating coarser block 3 of dimensions (I/J/K) : 2 69 24

.

.

.
reading restart file for block 2 (grid 1)
reading vist3d data from restart file, block 2
reading field eqn turb quantities from restart file, block 2

.

.

.
***** BEGINNING MULTIGRID CYCLE *****

iseq= 1
level top = 2
level bottom = 1
number of global grid levels = 2
lglobal= 2

The full grid is read, and two
coarser levels created

This is the finest level on
which computations are
performed

Restart data is read for
coarser block 2 only

113

Setting up an Unsteady Run
Multigrid strategies

.
.

interpolating correction from coarser block 3 to finer block 2 (grid 1)
jdim,kdim,idim (finer grid)= 137 47 2
jj2,kk2,ii2 (coarser grid)= 69 24 2

.

.
writing restart file for block 2

writing vist3d data to restart file, block 2
writing field eqn turb quantities to restart file, block 2

writing 2nd order time data to restart file, block 2

***** ENDING TIME ADVANCEMENT, iseq = 1 *****

writing plot3d file for JDIM X KDIM = 137 x 47 grid
plot3dg file is an xyz file at grid points
plot3dq file is a q file at grid points
plot3d files to be read with /mgrid/blank/2d qualifiers

writing printout file for IDIM X JDIM X KDIM = 2 x 137 x 47 grid

Only the coarser level solution
is written to the restart file

Multigrid performed
on the two coarser levels
only

Plot3D and print out data
written for coarser level

114

User Specified Grid Motion
Overview

CFL3D has the capability to perform computations for prescribed
surface motion in two ways

1. Prescribed, or user specified rigid grid motion. In this mode, the entire grid or
set of grids translates or rotates in a manner prescribed by user input.

2. Prescribed surface motion with deforming mesh. In this mode, the
surface(s) prescribed by the user translate or rotate and the mesh
deforms accordingly.

These types of motion are only available when the code is running in
unsteady mode.

115

User Specified Grid Motion
Rigid grid rotation

As an example consider the wing
shown:

x

z y

Axis of rotation
defined, in this case,
about an axis in the
Y-direction

The entire grid rotates

116

User Specified Rigid Grid Motion
Rigid grid rotation

The following unsteady input file performs
rotation about the axis shown:
input/output files:

wbgrid.cfl
plot3dg.bin
plot3dq.bin
cfl3d.out
cfl3d.res
cfl3d.turres
cfl3d.blomax
cfl3d.out15
cfl3d.prout
cfl3d.out20
ovrlp.bin
patch.bin
restart.bin

NASA Langley BACT Model: NACA 0012 af, AR=1.5 wing,.75TE Flap
Mach alpha beta ReUe Tinf,dR ialph ihstry

0.82000 0.00000 0.00000 0.236E+07 486.00 1 0
sref cref bref xmc ymc zmc

1.000 1.00000 1.00000 0.25000 0.00000 0.00000
dt irest iflagts fmax iunst cfl_tau

0.04000 0 3000 1.00000 1 2.00000
ngrid nplot3d nprint nwrest ichk i2d ntstep ita

1 1 1 1000 0 0 1 -2

Note that iunst = 1 for rigid
translation or rotation

117

User Specified Rigid Grid Motion
Rigid grid rotation

ncg iem iadvance iforce ivisc(i) ivisc(j) ivisc(k)
2 0 0 1 5 5 5

idim jdim kdim
73 345 73

ilamlo ilamhi jlamlo jlamhi klamlo klamhi
0 0 0 0 0 0

inewg igridc is js ks ie je ke
0 0 0 0 0 0 0 0

idiag(i) idiag(j) idiag(k) iflim(i) iflim(j) iflim(k)
1 1 1 3 3 3

ifds(i) fds(j) ifds(k) rkap0(i) rkap0(j) rkap0(k)
1 1 1 0.3333 0.3333 0.3333

grid nbci0 nbcidim nbcj0 nbcjdim nbck0 nbckdim iovrlp
1 1 1 1 1 5 1 0

i0: grid segment bctype jsta jend ksta kend ndata
1 1 1001 1 345 1 73 0

idim: grid segment bctype jsta jend ksta kend ndata
1 1 1002 1 345 1 73 0

j0: grid segment bctype ista iend ksta kend ndata
1 1 1003 1 73 1 73 0

jdim: grid segment bctype ista end ksta kend ndata
1 1 1003 1 73 1 73 0

k0: grid segment bctype ista iend jsta jend ndata
1 1 0 1 49 1 33 0
1 2 2004 1 49 33 313 2

tw/tinf cq
0.00000 0.00000

1 3 0 1 49 313 345 0
1 4 0 49 73 1 173 0
1 5 0 49 73 173 345 0

kdim: grid segment bctype ista iend jsta jend ndata
1 1 1003 1 73 1 345 0

118

User Specified Rigid Grid Motion
Rigid grid rotation

mseq mgflag iconsf mtt ngam
1 2 1 0 2

issc epsssc(1) epsssc(2) epsssc(3) issr epsssr(1) epsssr(2) epsssr(3)
0 0.3000 0.3000 0.3000 0 0.3000 0.3000 0.3000

ncyc mglevg nemgl nitfo
8 3 0 0

mit1 mit2 mit3 mit4 mit5 ...
1 1 1

1-1 blocking data:
nbli

2
number grid ista jsta ksta iend jend kend isva1 isva2

1 1 1 1 1 49 33 1 1 2
2 1 49 1 1 73 173 1 1 2

number grid ista jsta ksta iend jend kend isva1 isva2
1 1 1 345 1 49 313 1 1 2
2 1 49 345 1 73 173 1 1 2

patch interface data:
ninter

0
plot3d output:

grid iptyp ista iend iinc jsta jend jinc ksta kend kinc
1 0 1 49 1 1 345 1 1 1 1

movie
0

print out:
grid iptyp ista iend iinc jsta jend jinc ksta kend kinc

1 0 1 49 1 1 345 1 1 1 1

119

User Specified Rigid Grid Motion
Rigid grid rotation input

control surfaces:
ncs

0
grid ista iend jsta jend ksta kend iwall inorm

moving grid data - rigid translation (forced motion):
ntrans

0
lref

grid itrans rfreq utrans vtrans wtrans
grid dxmax dymax dzmax

moving grid data - rigid rotation (forced motion):
nrotat

1
lref
1.0

grid irotat rfreq omegax omegay omegaz xorig yorig zorig
1 2 0.05 0.00 5.00 0.00 0.25 0.00 0.00

grid dthxmx dthymx dthzmx
1 10. 10. 10.

Patched data:
ninter2

0

Rigid translation input. Note that
ntrans = 0, so that only remaining
header lines are included.

Rigid rotation input

The following lines must
be included when iunst = 1

120

User Specified Rigid Grid Motion
Rigid grid rotation input

Focusing attention on the rigid rotation input:

moving grid data - rigid rotation (forced motion):
nrotat

1
lref
1.0

grid irotat rfreq omegax omegay omegaz xorig yorig zorig
1 2 0.05 0.00 5.00 0.00 0.25 0.00 0.00

grid dthxmx dthymx dthzmx
1 10. 10. 10.

Number of grid blocks to be
rotated

Line repeated nrotat times

Line repeated nrotat times

Reference length for reduced frequency

121

User Specified Rigid Grid Motion
Rigid grid rotation input

Focusing on the last two lines of input on the last slide:
.
.

grid irotat rfreq omegax omegay omegaz xorig yorig zorig
1 2 0.05 0.00 5.00 0.00 0.25 0.00 0.00

grid dthxmx dthymx dthzmx
1 10. 10. 10.

.

.

grid - Grid block to be rotated
irotat - Type of rotation

= 0 - no rotation
= 1 - rotation with constant angular speed
= 2 - sinusoidal variation of angular displacement
= 3 - smooth increase in displacement,

asymptotically reaching a maximum angle
rfreq - reduced frequency when irotat = 2; growth rate to maximum angular displacement when

irotat = 3

122

User Specified Rigid Grid Motion
Rigid grid rotation input

.

.
grid irotat rfreq omegax omegay omegaz xorig yorig zorig

1 2 0.05 0.00 5.00 0.00 0.25 0.00 0.00
grid dthxmx dthymx dthzmx

1 10. 10. 10.
.
.

omegax, omegay, omegaz - x,y,z components of rotational velocity when irotat = 1; maximum angular
displacements about x,y,z-axes when irotat > 1

xorig, yorig, zorig - x,y,z coordinate of origin of the rotational axis

dthymx, dthymx,dthzmx - maximum (absolute) rotational displacement about the x,y,z-axes to be
allowed for this grid (set dthxmx,dthymx, dthzmx = 0 if no restriction is
required)

123

User Specified Rigid Grid Motion
Rigid grid rotation input

Example of sinusoidal rotational motion irotat = 2:

The rotational displacement (radians) within the code is governed by

.deg,~
.deg,~
.deg,~

,

max,

max,

max,

z

y

x

refr

omegaz

omegay

omegax

Llrefkrfreq

θ

θ

θ

=

=

=

==

)2sin(
180

~

)2sin(
180

~

)2sin(
180

~

max,

max,

max,

ref
rzz

ref
ryy

ref
rxx

L
tk

L
tk

L
tk

ππθθ

ππθθ

ππθθ

=

=

=

124

User Specified Rigid Grid Motion
Rigid grid rotation input

Based on the equations of sinusoidal motion on the last slide,

Nk
L

t
r

ref=∆

where N is the desired number of time steps per cycle. Consult Chapter 4
of the Version 5.0 User’s Manual pp. 55-62 for details on all types of
motion.

125

User Specified Rigid Grid Motion
Rigid grid rotation

The following diagnostic information on the rotation of
the surface(s) will be printed in ‘cfl3d.out’:

.

.

.
rotating block 1 to new position
creating coarser block 2 of dimensions (I/J/K) : 37 173 37
restricting grid speeds from finer block 1 to coarser block 2

creating coarser block 3 of dimensions (I/J/K) : 19 87 19
restricting grid speeds from finer block 2 to coarser block 3

.

.

.
writing restart file for block 1

writing vist3d data to restart file, block 1
writing field eqn turb quantities to restart file, block 1

writing 2nd order time data to restart file, block 1
writing dynamic mesh data to restart file, block 1

.

.

.

Note that new dynamic mesh data
has been written to the restart file

Grid speed information computed
for moving grid

126

User Specified Rigid Grid Motion
Rigid grid translation input

.

.
control surfaces:

ncs
0

grid ista iend jsta jend ksta kend iwall inorm
moving grid data - rigid translation (forced motion):

ntrans
1

lref
1.0

grid itrans rfreq utrans vtrans wtrans
1 2 0.05 0.00 0.00 5.00

grid dxmax dymax dzmax
1 10. 10. 10.

moving grid data - rigid rotation (forced motion):
nrotat

0
lref

grid irotat rfreq omegax omegay omegaz xorig yorig zorig
grid dthxmx dthymx dthzmx
Patched data:
ninter2

0

Rigid rotation input. Note that
nrotat = 0, so that only remaining
header lines are included.

Rigid translation input

127

User Specified Rigid Grid Motion
Rigid grid translation input

Focusing attention on the rigid translation input:

moving grid data - rigid translation (forced motion):
ntrans

1
lref
1.0

grid itrans rfreq utrans vtrans wtrans
1 2 0.05 0.00 0.00 5.00

grid dxmax dymax dzmax
1 10. 10. 10.

Number of grid blocks to be
translated

Line repeated ntrans times

Line repeated ntrans times

Reference length for reduced frequency

128

User Specified Rigid Grid Motion
Rigid grid translation input

Focusing on the last two lines of input from the last slide:
.
.

grid itrans rfreq utrans vtrans wtrans
1 2 0.05 0.00 0.00 5.00

grid dxmax dymax dzmax
1 10. 10. 10.

.

grid - Grid block to be rotated
itrans - Type of translation

= 0 - no translation
= 1 - translation with constant speed
= 2 - sinusoidal variation of displacement
= 3 - smooth increase in displacement,

asymptotically reaching a maximum displacement
rfreq - reduced frequency when itrans = 2; growth rate to maximum displacement when itrans = 3
utrans, vtrans, wtrans - x,y,z components of translation velocity when itrans = 1; maximum

displacements in the x,y,z directions when itrans > 1
dymax, dymax,dzmax - maximum (absolute) translation displacement in the x,y,z directions to be

allowed for this grid.

129

Surface Motion - Deforming Mesh
Overview

• CFL3D can perform several types of user specified surface motion
by deforming the mesh, i.e. surface rotation and/or translation of all
or partial segments of the solid surfaces as well as modal motion of
surfaces.

• Aeroelastic, user defined deforming mesh surface and user defined
rigid grid motion can be performed in any combination.

• There are two methods of deforming the mesh.
– Exponential Decay combined with Trans-Finite Interpolation (TFI) of

interior mesh points.
– Finite Macro-Element deformation combined with TFI.

• Note that deforming surface motion can only be performed with the
code running in unsteady mode.

130

Surface Motion - Deforming Mesh
Overview

• In the first mesh movement option (Exponential Decay Method) deformation
is performed in two steps.

– The first step is exponential decay of control points away from the moving surface. The rate
of the exponential decay is controlled by user input.

– The second step is a TFI of mesh points interior to the control points.

• Advantage of the Exponential Decay Method is that it is efficient
• In the second mesh movement option (Finite Macro-Element Method)

deformation is also performed in two steps.
– The first step is a finite element solution of macro-element points. The resulting solution

transmits surface motion to the element node points. The element stiffness varies with
distance from the surface. User specified input controls the rate at which the element
stiffness decays away from surfaces.

– The second step is a TFI of mesh points interior to the element node (or control) points.
– See Bartels, R. E., “Finite Macro-Element Mesh Deformation in a Structured Multi-Block

Navier-Stokes Code,” NASA/TM-2005-213789, July 2005.

• Advantage of the Finite Macro-Element Method is that it maintains mesh
quality, but is significantly more time consuming.

131

Surface Motion - Deforming Mesh
Deforming mesh terminology

Control point, also called
node point - member of a
sub-grid set of mesh points

Exterior
faces of a
flow field
block

Deforming
grid surface, e.g.
wing surface

Sub-grid surface
point

CFD
mesh
points

132

Surface Motion - Deforming Mesh
Deforming mesh using Exponential Decay Method

Nearest
surface sub-
grid point, s

Control
point, c

∆rsc

)/(

],1min[

)(

2max2

11

αβ −∆∆=

=

−=−

−

++

rrA
and

eD
where

rrDrr

sc

A
sc

n
s

n
ssc

n
c

n
c

r

rrrr

The movement of surface points is transmitted into the flow field sub-grid
through an exponential decay function Dsc . The rate of decay is controlled
by the parameters β2 and α2.

133

Surface Motion - Deforming Mesh
Deforming mesh with Exponential Decay Method

Note several potential draw backs to this approach:

• Too rapid a rate of decay (β2 too large, α2 too small) results in the
possibility of the surface points moving through nearby control
points.

• Too low a rate of decay (β2 too small, α2 too large) results in the
possibility of surface deformation being transmitted too far into the
flow field with possible penetration of opposing surfaces.

• Typical values for decay parameters are:

β2 = 1 - 10 , α2 = 0.005 – 0.05

134

Surface Motion - Deforming Mesh
Trans-Finite Interpolation (TFI) of interior points

Mesh points interior
to the sub-block
face are inter-
polated using
deflection of four
corner control
points

The final step is a volume TFI of
interior grid points based on locations
of mesh points on the sub-block faces

135

Surface Motion - Deforming Mesh
Coordinate systems and terminology for Finite Macro-Element Method

Computational domain Physical domain

Nodes using constant skip values Arbitrary node placement

136

Surface Motion - Deforming Mesh
Finite Macro-Element Method

The equations of elasticity are solved using Hooke’s law for element m

mmm C εσ
rr

=
where

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

m

m

m

m

m

m

m

mxz

yz

xy

zz

yy

xx

m

mxz

yz

xy

zz

yy

xx

m

G
G

G
E

E
E

C

00000
00000
00000
00000
00000
00000

,,

ε
ε
ε
ε
ε
ε

ε

σ
σ
σ
σ
σ
σ

σ
rr

)/exp(1
1

max1 rr
f

m
m ∆∆−−

=
βmmmm fGGfEE 00 , ==

∆rm is computed as
2

,
2

,
2

,)()()(mcsmcsmcsm zyxr ∆+∆+∆=∆

The user controls the rate of decay of material properties by the parameter β1.
Typical values of β1 are in the range of 1 – 2.

137

Surface Motion - Deforming Mesh
Input for deforming mesh

.

.
Moving grid data – data for field/multiblock mesh movement
nskip isktyp beta1 alpha1 beta2 alpha2 nsprgit

4 -1 2.0 1.1 10.0 0.01 0
grid iskip jskip kskip

1 4 4 2
Moving grid data – multi-motion coupling
ncoupl

0
Slave master xorig yorig zorig

nskip - number of blocks for which skip value data is input. If nskip = 0 the code
computes default skip values (isktyp = -1,1) or control point index values
(isktyp = -2,2).

isktyp - Parameter defining the mesh deformation approach
= - 2
= - 1
= 1
= 2

Exponential Decay Method

Finite Macro-Element Method

138

Surface Motion - Deforming Mesh
Input for deforming mesh

.

.
Moving grid data – data for field/multiblock mesh movement
nskip isktyp beta1 alpha1 beta2 alpha2 nsprgit

1 -1 2.0 1.0 10.0 0.01 0
grid iskip jskip kskip

1 4 4 2
Moving grid data – multi-motion coupling
ncoupl

0
Slave master xorig yorig zorig

beta1 - Parameter controlling macro-element stiffness decay (typically 1.0-2.0)
alpha1 - Relaxation parameter for Gauss-Seidel solver (typically 0.8-1.2).
beta2 - Decay parameter for the exponential decay method (typically 1 - 10).
alpha2 - Decay parameter for the exponential decay method (typically 0.005-0.05).
nsprgit - Number of spring analogy smoothing steps performed with the exponential

decay method. This step applies nsprgit spring analogy steps to the control
points after application of the exponential decay step (typically 0-2).

139

Surface Motion - Deforming Mesh
Input for deforming mesh

• There are 4 options for the construction of control points.
– Option 1: Code generated minimum number of control points.
– Option 2: Code generated default skip values.
– Option 3: User input of i,j,k skip values for each block.
– Option 4: User defined input of control point i,j,k indices for each block.

• These options depend on the value of nskip and the value of isktyp
– Option 1: isktyp = -2, 2 and nskip = 0
– Option 2: isktyp = -1, 1 and nskip = 0
– Option 3: isktyp = -1, 1 and nskip = ngrid (Note: ngrid = number of grid blocks)
– Option 4: isktyp = -2, 2 and nskip = ngrid

• Option 1 creates the minimum number of control points (at non-constant intervals) by
placing control point points only at each boundary segment extremity. This is the
preferred method.

• Options 2 creates skip values that result in control points at constant intervals through
out each of the grids, with control points at each boundary segment extremity.
Sometimes this is more robust than option 1, but can create many more control
points.

preferred
method

140

Surface Motion - Deforming Mesh
Option 1 – Code generated minimum number of control points

It is possible to have the code calculate the minimum number of control points. This is
the preferred method. The following lines of input accomplish that:

.

.
Moving grid data – data for field/multiblock mesh movement
nskip isktyp beta1 alpha1 beta2 alpha2 nsprgit

0 -2 2.0 1.1 10.0 0.01 0
grid iskip jskip kskip

Moving grid data – multi-motion coupling
ncoupl

0
Slave master xorig yorig zorig

Note that the data input line following the header ‘grid ….’ is omitted. The code
calculates the minimum number of control points possible consistent with placing control
points at each boundary segment extremity. The values it calculates will be found in the
‘cfl3d.out’ section that reflects input. Note that the value of isktyp must be either 2 or -2.
In general control points will not be at constant intervals.

nskip = 0

141

Surface Motion - Deforming Mesh
Option 2 – Code generated skip values

It is possible to have the code calculate default skip values. The following lines of input
accomplish that:

.

.
Moving grid data – data for field/multiblock mesh movement
nskip isktyp beta1 alpha1 beta2 alpha2 nsprgit

0 -1 2.0 1.1 10.0 0.01 0
grid iskip jskip kskip

Moving grid data – multi-motion coupling
ncoupl

0
Slave master xorig yorig zorig

Note that the data input line following the header ‘grid ….’ is omitted. The code
calculates the largest values of iskip, jskip, kskip possible. The values it calculates will be
found in the ‘cfl3d.out’ section that reflects input. Note that the value of isktyp must be
either 1 or -1.

nskip = 0

142

Surface Motion - Deforming Mesh
Option 3 – User i,j,k skip input

.

.
Moving grid data – data for field/multiblock mesh movement
nskip isktyp beta1 alpha1 beta2 alpha2 nsprgit

4 -1 2.0 1.1 10.0 0.01 0
grid iskip jskip kskip

1 4 4 2
2 4 8 2
3 4 8 2
4 4 4 2

Moving grid data – multi-motion coupling
ncoupl

0
Slave master xorig yorig zorig

grid - The block number for which skip values are input
iskip - Skip value for control points in the i-direction
jskip - Skip value for control points in the j-direction
kskip - Skip value for control points in the k-direction

nskip lines are required

nskip = ngrid

143

Surface Motion - Deforming Mesh
Permissible skip values

k
j i

For this grid:
idim = 9, jdim = 9, kdim = 5

and
iskip = 4, jskip = 4, kskip = 2

iskip, jskip, kskip values determine
the i, j, k skip intervals for creating
the sub-grid

Skip values must evenly divide into one minus the
dimension of the grid. jskip must divide evenly into jdim-1.
iskip must divide evenly into idim-1 , etc…

With idim = 9, permissible values of iskip are 2, 4 and 8.
With jdim = 9, permissible values of jskip are 2, 4 and 8.
With kdim = 5, permissible values of kskip are 2 and 4.

144

Surface Motion - Deforming Mesh
Option 4 – User input of i,j,k control point indices

.

.
Moving grid data – data for field/multiblock mesh movement
nskip isktyp beta1 alpha1 beta2 alpha2 nsprgit

2 -2 2.0 1.1 10.0 0.01 0
Control point input section

GRID NIND NJND NKND
1 3 5 3

************************** I NODE INDICES ***
1 73 81

************************** J NODE INDICES ***
1 33 173 313 345

************************** K NODE INDICES **
1 25 73

GRID NIND NJND NKND
2 3 5 3

************************** I NODE INDICES ***
1 73 81

************************** J NODE INDICES ***
1 33 173 313 345

************************** K NODE INDICES **
1 25 73

Moving grid data – multi-motion coupling
ncoupl

0
Slave master xorig yorig zorig

nskip input sets
are required

nskip = ngrid
isktyp must equal -2 or 2

145

Surface Motion - Deforming Mesh
Option 4 – User input of i,j,k control point indices

• This option is used when there are problem areas in the surface motion that
require customized control point placement. e.g. significant surface motion
restricted to a small portion of the entire surface area or if the finite macro-element
method is used and added control points are needed to define affine element
shapes.

• Note that a control point must be placed at the extremities of all boundary condition
segments, 1-1 blocking segments and all block corners.

• The code will do a check at 1-1 blocking segments to see if the control points you
have selected result in continuity in control placement between 1-1 blocking
boundaries. It will add points as necessary to maintain control point continuity. This
is a very powerful feature that can be very useful when adding control points.

• The code will not tell you if a b.c. segment extremity or block corner does not have a
control point assigned to it. It will simply cause the grid motion to be messed up and
produce negative volumes!

146

Surface Motion - Deforming Mesh
Example 1: 3D Control surface rotation with Exponential Decay method

x

z y

As an example consider the wing
shown undergoing control surface
rotation:

Trailing edge control
surface

147

Surface Motion - Deforming Mesh
Example 1: 3D Control surface rotation with Exponential Decay method

The following unsteady input file performs the
control surface rotation about the hinge point:
input/output files:

wbgrid.cfl
plot3dg.bin
plot3dq.bin
cfl3d.out
cfl3d.res
cfl3d.turres
cfl3d.blomax
cfl3d.out15
cfl3d.prout
cfl3d.out20
ovrlp.bin
patch.bin
restart.bin

NASA Langley BACT Model: NACA 0012 af, AR=1.5 wing,.75TE Flap
Mach alpha beta ReUe Tinf,dR ialph ihstry

0.82000 0.00000 0.00000 0.236E+07 486.00 1 0
sref cref bref xmc ymc zmc

1.000 1.00000 1.00000 0.25000 0.00000 0.00000
dt irest iflagts fmax iunst cfl_tau

0.04000 0 3000 1.00000 2 2.00000
ngrid nplot3d nprint nwrest ichk i2d ntstep ita

1 1 1 1000 0 0 1 -2

Note that iunst = 2 for
deforming mesh

148

Surface Motion - Deforming Mesh
Example 1: 3D Control surface rotation with Exponential Decay method

ncg iem iadvance iforce ivisc(i) ivisc(j) ivisc(k)
2 0 0 1 5 5 5

idim jdim kdim
81 345 73

ilamlo ilamhi jlamlo jlamhi klamlo klamhi
0 0 0 0 0 0

inewg igridc is js ks ie je ke
0 0 0 0 0 0 0 0

idiag(i) idiag(j) idiag(k) iflim(i) iflim(j) iflim(k)
1 1 1 4 4 4

ifds(i) fds(j) ifds(k) rkap0(i) rkap0(j) rkap0(k)
1 1 1 0.3333 0.3333 0.3333

grid nbci0 nbcidim nbcj0 nbcjdim nbck0 nbckdim iovrlp
1 1 1 1 1 5 1 0

i0: grid segment bctype jsta jend ksta kend ndata
1 1 1005 1 345 1 73 0

idim: grid segment bctype jsta jend ksta kend ndata
1 1 1002 1 345 1 73 0

j0: grid segment bctype ista iend ksta kend ndata
1 1 1003 1 81 1 73 0

jdim: grid segment bctype ista end ksta kend ndata
1 1 1003 1 81 1 73 0

k0: grid segment bctype ista iend jsta jend ndata
1 1 0 1 73 1 33 0
1 2 2004 1 73 33 313 2

tw/tinf cq
0.00000 0.00000

1 3 0 1 73 313 345 0
1 4 0 73 81 1 173 0
1 5 0 73 81 173 345 0

kdim: grid segment bctype ista iend jsta jend ndata
1 1 1003 1 81 1 345 0

149

Surface Motion - Deforming Mesh
Example 1: 3D Control surface rotation with Exponential Decay method

mseq mgflag iconsf mtt ngam
1 2 1 0 2

issc epsssc(1) epsssc(2) epsssc(3) issr epsssr(1) epsssr(2) epsssr(3)
0 0.3000 0.3000 0.3000 0 0.3000 0.3000 0.3000

ncyc mglevg nemgl nitfo
8 3 0 0

mit1 mit2 mit3 mit4 mit5 ...
1 1 1

1-1 blocking data:
nbli

2
number grid ista jsta ksta iend jend kend isva1 isva2

1 1 1 1 1 73 33 1 1 2
2 1 73 1 1 81 173 1 1 2

number grid ista jsta ksta iend jend kend isva1 isva2
1 1 1 345 1 73 313 1 1 2
2 1 73 345 1 81 173 1 1 2

patch interface data:
ninter

0
plot3d output:

grid iptyp ista iend iinc jsta jend jinc ksta kend kinc
1 0 1 73 1 33 313 1 1 1 1

movie
0

print out:
grid iptyp ista iend iinc jsta jend jinc ksta kend kinc

1 0 1 73 1 33 313 1 1 1 1

150

Surface Motion - Deforming Mesh
Example 1: 3D Control surface rotation with Exponential Decay method

Control Surfaces:
ncs
0

Grid ista iend jsta jend ksta kend iwall inorm
Moving grid data – deforming surface (forced motion):
ndefrm

2
lref
1.0

Grid idefrm rfreq u/omegax v/omegay w/omegaz xorig yorig zorig
1 2 0.05 0.00 5.00 0.00 0.75 0.00 0.00
1 2 0.05 0.00 5.00 0.00 0.75 0.00 0.00

Grid icsi icsf jcsi jcsf kcsi kcsf
1 29 53 33 72 1 1
1 29 53 274 313 1 1

Moving grid data – aeroelastic surface (aeroelastic motion):
naesrf

0
Iaesrf ngrid grefl uinf qinf nmodes iskyhook
Freq gmass damp x0(2n-1) xo(2n) gf0(2n)

Moddfl amp freq t0
Grid iaei iaef jaei jaef kaei kaef

Moving grid data – data for field/multiblock mesh movement
nskip isktyp beta1 alpha1 beta2 alpha2 nsprgit

0 -2 1.0 1.1 1.0 0.005 0
Control point index input

Moving grid data – multi-motion coupling
ncoupl

0
Slave master xorig yorig zorig

The following lines must
be included when iunst = 2

User specified surface
motion input

Aeroelasticity input. Note
that only header cards
are input when naesrf = 0

Mesh deformation
input

151

Surface Motion - Deforming Mesh
Example 1: 3D Control surface rotation with Exponential Decay method

.

.
Moving grid data – deforming surface (forced motion):
ndefrm

2
lref
1.0

Grid idefrm rfreq u/omegax v/omegay w/omegaz xorig yorig zorig
1 2 0.05 0.00 5.00 0.00 0.75 0.00 0.00
1 2 0.05 0.00 5.00 0.00 0.75 0.00 0.00

Grid icsi icsf jcsi jcsf kcsi kcsf
1 29 53 33 72 1 1
1 29 53 274 313 1 1

.

.

Grid - grid block containing the moving surface
idefrm - type of surface motion

= 1 - translation
= 2 - rotation

rfreq - reduced frequency of the surface motion

u/omegax, v/omegay, w/omegaz - x,y,z-components of surface translational velocity if idefrm = 1
- x,y,z-components of surface rotational velocity if idefrm = 2

xorig, yorig, zorig - x,y,z coordinates of the origin of the rotation axis (note: value
must be input even when idefrm = 1)

ndefrm lines required

ndefrm lines required

Note that ndefrm = 2 because the trailing edge control
surface is defined by an upper wing surface segment
and a lower wing surface segment

152

Surface Motion - Deforming Mesh
Example 1: 3D Control surface rotation with Exponential Decay method

.

.
Moving grid data – deforming surface (forced motion):
ndefrm

2
lref
1.0

Grid idefrm rfreq u/omegax v/omegay w/omegaz xorig yorig zorig
1 2 0.05 0.00 5.00 0.00 0.75 0.00 0.00
1 2 0.05 0.00 5.00 0.00 0.75 0.00 0.00

Grid icsi icsf jcsi jcsf kcsi kcsf
1 29 53 33 72 1 1
1 29 53 274 313 1 1

.

.

Starting and ending
i-indices of moving
surfaces

Starting and ending
j-indices of moving
surfaces

Starting and ending
k-indices of moving
surfaces

Note that the two surface definitions actually comprise a single control
device (upper and lower surfaces of the trailing edge control device).

1st grid point aft of
Xorig = 0.75

153

Surface Motion - Deforming Mesh
Example 1: 3D Control surface rotation with Exponential Decay method

Short cut: If all the solid surfaces are to be rotated or translated in an identical
manner, an input shortcut could have been applied:

.
.

Moving grid data – deforming surface (forced motion):
Ndefrm

-1
lref
1.0

Grid idefrm rfreq u/omegax v/omegay w/omegaz xorig yorig zorig
1 2 0.05 0.00 5.00 0.00 0.75 0.00 0.00

Grid icsi icsf jcsi jcsf kcsi kcsf
1 0 0 0 0 0 0

.

.

1 line only

1 line only

Setting ndefrm = -1 applies the input values to all surfaces. Input
values of grid, and icsi, icsf, jcsi, jcsf, kcsi, kcsf are placeholders.

154

Surface Motion - Deforming Mesh
Example 1: 3D Control surface rotation with Exponential Decay method

Moving grid data – data for field/multiblock mesh movement
nskip isktyp beta1 alpha1 beta2 alpha2 nsprgit

0 -2 1.0 1.1 1.0 0.005 0
Control point index input

Note that α2 * ∆ rmax is the distance to which
surface motion is transmitted unabated into
the flow field

β2 - rate at which surface motion decays
away from a moving surface (outside
of inner region controlled by α2)

Control point index input using
Exponential Decay Method (isktyp < 0)

nskip = 0 forces automatic generation of the minimum number of control points
(with isktyp = -2,2) at all segment and block extremities, while maintaining continuity
at all blocking boundaries

155

Surface Motion - Deforming Mesh
Example 1: 3D Control surface rotation with Exponential Decay method

Moving grid data – data for field/multiblock mesh movement
nskip isktyp beta1 alpha1 beta2 alpha2 nsprgit

0 -2 2.0 1.1 1.0 0.005 0
Control point index input

Moving grid data – multi-motion coupling
ncoupl

0
Slave master xorig yorig zorig

• This input option automatically creates the following control points: (This format is how it
would look if you were to input these control points by hand (i.e. using Option 4))

• Note that i node indices, j node indices, k node indices span the entire
block. (i.e. idim = 81, jdim = 345, kdim = 73)

• Boundary segments have a control point. The trailing edge at j = 33 and 313
has control points assigned. The wing tip at i = 73 has a control point assigned.

• Other control points have been assigned at discontinuities in the surface movement.
(e.g. at i = 28, 29 and 53, 54 and j = 72, 73 and 273, 274) See the next slide.

GRID NIND NJND NKND
1 7 8 2

************************** I NODE INDICES ***
1 28 29 53 54 73 81

************************** J NODE INDICES ***
1 33 72 73 273 274 313 345

************************** K NODE INDICES **
1 73

Control point option 1 is used here

156

Surface Motion - Deforming Mesh
Example 1: 3D Control surface rotation with Exponential Decay method

Upper surface control point locations

GRID NIND NJND NKND
1 7 8 3

************************** I NODE INDICES ***
1 28 29 53 54 73 81

************************** J NODE INDICES ***
1 33 72 73 273 274 313 345

************************** K NODE INDICES **
1 25 73

Control points selected
Center of rotation

Discontinuous
grid motion

Control surface definition

Control points
located at all
grid motion
discontinuities

157

Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation with Finite Macro-Element Method

Consider the 2D three element airfoil with rotation and translation of the
trailing edge flap.

a) Initial mesh, flap 30 degrees b) Final mesh, flap 60 degrees

From Bartels, R. E., “Finite Macro-Element Mesh Deformation in a Structured Multi-Block Navier-Stokes Code,”
NASA/TM-2005-213789, July 2005.

158

Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation with Finite Macro-Element Method

.

.
MOVING GRID DATA - DEFORMING SURFACE (FORCED MOTION):
NDEFRM

1
LREF

1.0
GRID IDEFRM RFREQ U/OMEGAX V/OMEGAY W/OMEGAZ XORIG YORIG ZORIG

3 2 0.05 0.00 25.00 0.00 0.80 0.00 0.00
GRID ICSI ICSF JCSI JCSF KCSI KCSF

3 1 2 49 217 1 1
MOVING GRID DATA - AEROELASTIC SURFACE (AEROELASTIC MOTION):
NAESRF

0
IAESRF NGRID GREFL UINF QINF NMODES ISKYHOK
FREQ GMASS DAMP X0(2N-1) X0(2N) GF0(2N)

MODDFL AMP FREQ T0
GRID IAEI IAEF JAEI JAEF KAEI KAEF

MOVING GRID DATA - DATA FOR FIELD/MULTIBLOCK MESH MOVEMENT
NSKIP ISKTYP BETA1 ALPHA1 BETA2 ALPHA2 ISPRNIT

4 2 1.000 1.000 20.000 0.005 0
CONTROL POINT INDEX INPUT

GRID NIND NJND NKND
1 2 33 2

*** I NODE INDICES **
1 2

Number of mesh
blocks

This section defines
the rotation of the
trailing edge flap

Finite Macro-Element
Method with user input
of control point indices

159

Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation with Finite Macro-Element Method

*** J NODE INDICES **
1 10 34 49 75 101 113 137 161 201

237 273 299 317 333 349 380 395 410 433
445 473 509 545 585 609 633 645 671 697
712 736 745

** K NODE INDICES **
1 57

GRID NIND NJND NKND
2 2 27 2

** I NODE INDICES ***
1 2

** J NODE INDICES ***
1 10 34 49 75 101 113 137 145 157

185 225 261 281 299 325 361 397 437 461
485 497 523 549 564 588 597

** K NODE INDICES ***
1 89

GRID NIND NJND NKND
3 2 16 2

** I NODE INDICES ***
1 2

** J NODE INDICES ***
1 10 34 49 75 101 116 121 129 153

165 191 217 232 256 265
** K NODE INDICES ***

1 65
GRID NIND NJND NKND

4 2 32 5

Up to 10 per line,
500 total allowed

160

Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation with Finite Macro-Element Method

*** I NODE INDICES ***
1 2

*** J NODE INDICES ***
1 10 34 49 75 101 116 121 133 161

201 237 257 273 289 320 335 350 373 385
413 449 485 525 549 573 585 611 637 652
676 685

*** K NODE INDICES ***
1 10 17 24 33

MOVING GRID DATA - MULTI-MOTION COUPLING
NCOUPL

0
SLAVE MASTER XORIG YORIG ZORIG

161

Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation with Finite Macro-Element Method

Initial Macro-Elements Final Macro-Elements

Initial Mesh Final Mesh
From Bartels, R. E., “Finite Macro-Element Mesh Deformation in a Structured Multi-Block Navier-Stokes Code,”
NASA/TM-2005-213789, July 2005.

162

Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation with Finite Macro-Element Method

From Bartels, R. E., “Finite Macro-Element Mesh Deformation in a Structured Multi-Block Navier-Stokes Code,”
NASA/TM-2005-213789, July 2005.

163

Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation – 1-1 block point checking

Control points without
1-1 point blocking check

Control points with
1-1 point blocking check

Block
boundaries
separate due
to high strain
rates in cove
region.

Control point orientation after
flap is deflected

164

Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation using Exponential Decay Method

Without spring analogy smoothing steps

With 5 spring analogy smoothing steps

165

Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation using Exponential Decay Method

An alternate approach is to allow automatic creation of the minimum number
of control points. (Option 1) The input below accomplishes that by setting nskip = 0.
Note that the Exponential Decay Method is used (isktyp < 0).

.

.
MOVING GRID DATA - DATA FOR FIELD/MULTIBLOCK MESH MOVEMENT

NSKIP ISKTYP BETA1 ALPHA1 BETA2 ALPHA2 ISPRNIT
0 -2 1.000 1.100 2.000 0.05 2

CONTROL POINT INDEX INPUT
MOVING GRID DATA - MULTI-MOTION COUPLING
NCOUPL

0
SLAVE MASTER XORIG YORIG ZORIG

These parameters define the
control point motion with the
Exponential Decay Method

166

Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation using Exponential Decay Method

The control points that are code selected appear in the ‘cfl3d.out’ file:

.

.
moving grid data - data for field/multiblock mesh movement

nskip isktyp beta1 alpha1 beta2 alpha2 nsprngit
4 -2 1.000000 1.100000 2.000000 0.050000 2

ng nipt njpt nkpt
1 2 11 2

control point i-indices for grid levels 1 2 3
1 1 1
2 1 1

control point j-indices for grid levels 1 2 3
1 1 1

49 25 13
50 25 13

137 69 35
273 137 69
317 159 80
473 237 119
609 305 153
696 348 174
697 349 175
745 373 187

control point k-indices for grid levels 1 2 3
1 1 1

57 29 15

ng nipt njpt nkpt
2 2 11 2

control point i-indices for grid levels 4 5 6
1 1 1
2 1 1

control point j-indices for grid levels 4 5 6
1 1 1

49 25 13
50 25 13

137 69 35
145 73 37
281 141 71
325 163 82
461 231 116
548 274 137
549 275 138
597 299 150

control point k-indices for grid levels 4 5 6
1 1 1

89 45 23
.
.
.

Control points
at finest grid
level

The resulting mesh movement is shown in the next slide.

167

Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation using Exponential Decay Method

Initial Macro-Elements Final Macro-Elements

Final MeshInitial Mesh

168

Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation

• The mesh movement shown in the previous slides is robust (no negative volumes) through the
entire range of motion shown, however mesh quality aft of the flap is somewhat degraded after
deflection.

• If β2 is set to 1.0 or if the Finite Macro-Element method is used with the code selected minimum
number of control points (as was shown), negative volumes are the result.

• There is a simple way to fix this problem. This will be demonstrated next. In the process an option
for running the code will be demonstrated in which only the mesh motion and mesh calculations
(e.g. metric and volume calculations) are performed in the code. This option greatly speeds up the
code when the mesh motion is being debugged.

• The ‘Mesh only’ run option is invoked by using the keyword input, meshdef 1 . Keyword
input will be discussed in detail later in the course. Note spelling and capitalization are important.

• This is input as follows:
.
.

cfl3d.out20
ovrlp.bin
patch.bin
restart.bin

>
meshdef 1
negvol 1
<
3 Element Airfoil case

Mach alpha beta ReUe Tinf,dR ialph ihstry
.
.

Keyword input

169

Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation

• Setting the keyword meshdef to 1 also causes the control points to be output in a
Tecplot file in point wise data format. Other auxiliary data are also printed out in other
files.

• If one processor is used all block control points are output into the file Tecplot data
file ‘fort.4000’. Data included in this file are x,y,z locations of control points, x,y,z
deflections per time step, node number, and node number of the nearest surface point.

• If multiple processors are used, the control points from the blocks processed on each
processor are put in the successive files ‘fort.4001, fort.4002, …’

• Note that if the option movie = inc is used, the control points at every inc time steps
will be output. If movie = 0, only control points at the final time step will be output.

• Once the control points are plotted it is possible to better visualize where added control
points need to be placed.

• This is the option that was used to create the plots of control points shown in this
presentation.

170

Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation

• Returning to the flap rotation example above, say we want to run it using control point
option 1 (nskip = 0, isktyp = -2,2) but now using the Finite Macro-Element method
(isktyp = 2)

• The input parameters used are: β1 = 1.0, α1 = 0.9.
• Keywords ‘meshdef 1’ and ‘negvol 1’ are set. When the keyword ‘negvol 1’ is used,

the code continues executing and prints a diagnostic message in ‘cfl3d.out’ indicating
where the negative volume occurred.

• The code encounters negative volumes, with the following messages appearing
in the ‘cfl3d.out’ file:

.

.
WARNING ... negative volume at i,j,k= 1 514 2 block 1 not stopping!
WARNING ... negative volume at i,j,k= 1 515 2 block 1 not stopping!

.

.
• The majority of negative volumes appear to be in block 1. By plotting the control point

output it is clear that elements around the leading edge slat are not well defined, and
probably causing poorly defined (singular) macro-elements in that region.

171

Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation

Contents of ‘meshdef.inp’:
• The first step in solving this problem is

to observe that the file ‘meshdef.inp’
has been created.

• This file contains the control points that
were created by the code.

• Contents of this file can be pasted into
the input and customized as needed.

• Since negative volumes occurred in
block 1 we will add to the control
points in that block.

GRID NIND NJND NKND
1 2 11 2

******************************* I NODE INDICES ************************************
1 2

******************************* J NODE INDICES ***********************************
1 49 50 137 273 317 473 609 696 697

745
******************************* K NODE INDICES ***********************************

1 57
GRID NIND NJND NKND

2 2 11 2
******************************* I NODE INDICES ************************************

1 2
******************************* J NODE INDICES ************************************

1 49 50 137 145 281 325 461 548 549
597

******************************* K NODE INDICES ***********************************
1 89

GRID NIND NJND NKND
3 2 8 2

******************************* I NODE INDICES ***********************************
1 2

******************************* J NODE INDICES **********************************
1 49 50 121 129 216 217 265

******************************* K NODE INDICES *********** ***********************
1 65

GRID NIND NJND NKND
4 2 10 2

******************************* I NODE INDICES ***********************************
1 2

******************************* J NODE INDICES **********************************
1 49 50 121 257 413 549 636 637 685

******************************* K NODE INDICES **********************************
1 33

172

Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation

• These additional points have been
chosen simply to fill in gaps in the
control point distribution.

• This customized input is pasted into
the input file, and nskip set to 4.

GRID NIND NJND NKND
1 2 18 2

******************************* I NODE INDICES ************************************
1 2

******************************* J NODE INDICES ***********************************
1 49 50 103 137 173 223 273 297 317

373 423 473 543 609 696 697 745
******************************* K NODE INDICES ***********************************

1 57
GRID NIND NJND NKND

2 2 11 2
******************************* I NODE INDICES ************************************

1 2
******************************* J NODE INDICES ************************************

1 49 50 137 145 281 325 461 548 549
597

******************************* K NODE INDICES ***********************************
1 89

GRID NIND NJND NKND
3 2 12 2

******************************* I NODE INDICES ***********************************
1 2

******************************* J NODE INDICES **********************************
1 49 50 73 101 121 129 137 157 216

217 265
******************************* K NODE INDICES *********** ***********************

1 65
GRID NIND NJND NKND

4 2 10 4
******************************* I NODE INDICES ***********************************

1 2
******************************* J NODE INDICES **********************************

1 49 50 121 257 413 549 636 637 685
******************************* K NODE INDICES **********************************

1 10 17 33

Contents of ‘meshdef.inp’ customized:

Points added that remove
the negative volumes in
block 1

Points added to better define
the flap region

173

Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation

GRID NIND NJND NKND
1 2 26 2

********************************** I NODE INDICES ************************************
1 2

********************************** J NODE INDICES ************************************
1 49 50 103 109 129 137 173 203 223

273 297 317 373 423 473 523 543 573 609
617 637 643 696 697 745

********************************** K NODE INDICES ************************************
1 57

GRID NIND NJND NKND
.
.
.
.

GRID NIND NJND NKND
3 2 13 2

********************************** I NODE INDICES *************************************
1 2

********************************** J NODE INDICES *************************************
1 49 50 73 101 121 129 137 157 163

216 217 265
********************************** K NODE INDICES ************************************

1 65
GRID NIND NJND NKND

4 2 20 4
********************************** I NODE INDICES ************************************

1 2
********************************** J NODE INDICES ************************************

1 49 50 73 101 121 257 313 363 413
463 483 513 549 557 577 583 636 637 685

********************************** K NODE INDICES ************************************
1 10 17 33

Control point indices the code actually uses:

This is the data output into the new
file ‘meshdef.inp’ after the code is
rerun. This file is printed out because
new points have been added by the code
in addition to points added by the user.

Control points added
by user

Control points added
by the code to maintain
1-1 blocking interface
continuity

174

Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation

Control point indices the code actually uses:

Control point lines
added by the user

Control point lines added
by the code to maintain
continuity at 1-1 blocking
interfaces

With these new control points, the code runs robustly with no negative
volumes for both the Exponential Decay and Finite Macro-Element methods
for a range of parameter values. Note that the region just aft of the flap
retains grid quality better using the Finite Macro-Element method than did the original.

175

Surface Motion - Deforming Mesh
Example 3 : 2D airfoil rotation with Finite Macro-Element Method

From Bartels, R. E., “Finite Macro-Element Mesh Deformation in a Structured Multi-Block Navier-Stokes Code,”
NASA/TM-2005-213789, July 2005.

Initial macro-element orientation Finite macro-element orientation
after pitch up

Trailing edge detail of macro-element
Orientation – note orthogonality

Trailing edge detail of mesh
orientation

176

Surface Motion - Deforming Mesh
Example 3 : 2D airfoil rotation with Exponential Decay Method

Control point orientation
after pitch up, β2 = 2, α2 = .005Initial control point orientation

177

Surface Motion - Deforming Mesh
Example 4 : Internal flow through a flexible tube using the Finite Macro-Element Method

y

x

z

x
y

z

Top
view:

Bottom
view:

y

x

y

z

y

x

X-Y plane view of
deformed control points

X-Y plane view of
deformed mesh points

Control points for motion
of internal flow field mesh

Deformed flexible
tube surface

Y-Z plane view of
deformed control points

178

Surface Motion - Deforming Mesh
Example 5 : Transport wing bending using the Exponential Decay Method

Deformed mesh

Initial and deformed
geometry

This example used
mesh movement Option 2
(isktyp = -1, nskip = 0)

179

Surface Motion - Deforming Mesh
Geometric conservation law

In general the equations computed are

)(1 QR
t
Q

J
=

∂
∂

where

Q - solution vector
J - Jacobian of the grid transformation
R(Q) - right hand side composed of spatial flux terms

For steady and unsteady computations:

⎥
⎦

⎤
⎢
⎣

⎡
∂
−∂

+
∂
−∂

+
∂
−∂

−=
ζηξ

)()()()(vvv HHGGFFQR

where
F,G,H - inviscid fluxes
Fv,Gv,Hv - viscous fluxes

180

Surface Motion - Deforming Mesh
Geometric conservation law

For unsteady deforming mesh computations there is an additional term:

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+

⎥
⎦

⎤
⎢
⎣

⎡
∂
−∂

+
∂
−∂

+
∂
−∂

−=

JJJJt
Q

HHGGFFQR

ttt

vvv

ζ
ζ

η
η

ξ
ξ

ζηξ

1

)()()()(

Geometric Conservation Law (GCL), due to grid volume
change

The implication of this is that a computation using rigid grid motion may
perform somewhat differently than a deforming grid solution with the same
time step size, number of sub-iterations and CFL number. However, the
two fully converged solutions will be the same. See Bartels, R. E., “Mesh and
Solution Strategies and the Accurate Computation of Unsteady Spoiler and
Aeroelastic Problems,” Journal of Aircraft, Vol. 37, No. 3, May 2000, pp. 521-529.

181

Surface Motion - Deforming Mesh
Multiple types of coupled motion

Consider the example of wing plunge combined with control surface
rotation. Since the control surface rotation is about a point fixed on the
larger moving wing surface, coupling of the two motions will be
required. There are two ways to perform this coupled motion:

1. Coupling control surface rotation and wing translation combined using
mesh deformation.

2. Coupling control surface rotation using mesh deformation with rigid
grid translation.

Although these two approaches result in identical wing surface motion,
off body grid motion will be much different.

182

Surface Motion - Deforming Mesh
Example: Control surface rotation plus wing plunging

x

z y

As an example consider the wing
shown having both wing plunge plus
control surface rotation:

Trailing edge control
surface

183

Surface Motion - Deforming Mesh
Example: Multi-motion using deforming mesh

The following unsteady input file performs the wing plunging with
control surface rotation using deforming mesh:

input/output files:
wbgrid.cfl
plot3dg.bin
plot3dq.bin
cfl3d.out
cfl3d.res
cfl3d.turres
cfl3d.blomax
cfl3d.out15
cfl3d.prout
cfl3d.out20
ovrlp.bin
patch.bin
restart.bin

NASA Langley BACT Model: NACA 0012 af, AR=1.5 wing,.75TE Flap
Mach alpha beta ReUe Tinf,dR ialph ihstry

0.82000 0.00000 0.00000 0.236E+07 486.00 1 0
sref cref bref xmc ymc zmc

1.000 1.00000 1.00000 0.25000 0.00000 0.00000
dt irest iflagts fmax iunst cfl_tau

0.04000 0 3000 1.00000 2 2.00000
ngrid nplot3d nprint nwrest ichk i2d ntstep ita

1 1 1 1000 0 0 1 -2

Note that iunst = 2 since
deforming mesh is used

184

Surface Motion - Deforming Mesh
Example: Multi-motion using deforming mesh

ncg iem iadvance iforce ivisc(i) ivisc(j) ivisc(k)
2 0 0 1 5 5 5

idim jdim kdim
73 345 73

ilamlo ilamhi jlamlo jlamhi klamlo klamhi
0 0 0 0 0 0

inewg igridc is js ks ie je ke
0 0 0 0 0 0 0 0

idiag(i) idiag(j) idiag(k) iflim(i) iflim(j) iflim(k)
1 1 1 3 3 3

ifds(i) fds(j) ifds(k) rkap0(i) rkap0(j) rkap0(k)
1 1 1 0.3333 0.3333 0.3333

grid nbci0 nbcidim nbcj0 nbcjdim nbck0 nbckdim iovrlp
1 1 1 1 1 5 1 0

i0: grid segment bctype jsta jend ksta kend ndata
1 1 1001 1 345 1 73 0

idim: grid segment bctype jsta jend ksta kend ndata
1 1 1002 1 345 1 73 0

j0: grid segment bctype ista iend ksta kend ndata
1 1 1003 1 73 1 73 0

jdim: grid segment bctype ista end ksta kend ndata
1 1 1003 1 73 1 73 0

k0: grid segment bctype ista iend jsta jend ndata
1 1 0 1 49 1 33 0
1 2 2004 1 49 33 313 2

tw/tinf cq
0.00000 0.00000

1 3 0 1 49 313 345 0
1 4 0 49 73 1 173 0
1 5 0 49 73 173 345 0

kdim: grid segment bctype ista iend jsta jend ndata
1 1 1003 1 73 1 345 0

185

Surface Motion - Deforming Mesh
Example: Multi-motion using deforming mesh

mseq mgflag iconsf mtt ngam
1 2 1 0 2

issc epsssc(1) epsssc(2) epsssc(3) issr epsssr(1) epsssr(2) epsssr(3)
0 0.3000 0.3000 0.3000 0 0.3000 0.3000 0.3000

ncyc mglevg nemgl nitfo
8 3 0 0

mit1 mit2 mit3 mit4 mit5 ...
1 1 1

1-1 blocking data:
nbli

2
number grid ista jsta ksta iend jend kend isva1 isva2

1 1 1 1 1 49 33 1 1 2
2 1 49 1 1 73 173 1 1 2

number grid ista jsta ksta iend jend kend isva1 isva2
1 1 1 345 1 49 313 1 1 2
2 1 49 345 1 73 173 1 1 2

patch interface data:
ninter

0
plot3d output:

grid iptyp ista iend iinc jsta jend jinc ksta kend kinc
1 0 1 49 1 1 345 1 1 1 1

movie
0

print out:
grid iptyp ista iend iinc jsta jend jinc ksta kend kinc

1 0 1 49 1 1 345 1 1 1 1

186

Surface Motion - Deforming Mesh
Example: Multi-motion using deforming mesh

Control Surfaces:
ncs
0

Grid ista iend jsta jend ksta kend iwall inorm
Moving grid data – deforming surface (forced motion):
ndefrm

3
lref
1.0

Grid idefrm rfreq u/omegax v/omegay w/omegaz xorig yorig zorig
1 1 0.10 0.00 0.00 0.20 0.00 0.00 0.00
1 2 0.05 0.00 10.00 0.00 0.75 0.00 0.00
1 2 0.05 0.00 10.00 0.00 0.75 0.00 0.00

Grid icsi icsf jcsi jcsf kcsi kcsf
1 1 49 33 313 1 1
1 25 37 33 65 1 1
1 25 37 281 313 1 1

Moving grid data – aeroelastic surface (aeroelastic motion):
naesrf

0
Iaesrf ngrid grefl uinf qinf nmodes iskyhook
Freq gmass damp x0(2n-1) xo(2n) gf0(2n)

Moddfl amp freq t0
Grid iaei iaef jaei jaef kaei kaef

Moving grid data – data for field/multiblock mesh movement
nskip isktyp beta1 alpha1 beta2 alpha2 nsprgit

0 -2 1.0 1.1 1.0 0.005 0
Control point index input

Moving grid data – multi-motion coupling
ncoupl

1
Slave master xorig yorig zorig

1 1 0.75 0.00 0.00

User specified surface
motion data now
includes both trans-
lation and rotation

Multi-motion coupling
data now included

187

Surface Motion - Deforming Mesh
Example: Multi-motion using deforming mesh

Focusing on the user specified motion input:
.
.

Moving grid data – deforming surface (forced motion):
ndefrm

3
lref
1.0

Grid idefrm rfreq u/omegax v/omegay w/omegaz xorig yorig zorig
1 1 0.10 0.00 0.00 0.20 0.00 0.00 0.00
1 2 0.05 0.00 10.00 0.00 0.75 0.00 0.00
1 2 0.05 0.00 10.00 0.00 0.75 0.00 0.00

Grid icsi icsf jcsi jcsf kcsi kcsf
1 1 49 33 313 1 1
1 25 37 33 65 1 1
1 25 37 281 313 1 1

.

.

The new lines prescribe
the motion of the wing
surface

Note that idefrm = 1, which corresponds to translational motion.

188

Surface Motion - Deforming Mesh
Example: Multi-motion using deforming plus rigid grid motion

The following unsteady input file performs the wing plunging using
rigid grid translation and control surface rotation using deforming mesh:

input/output files:
wbgrid.cfl
plot3dg.bin
plot3dq.bin
cfl3d.out
cfl3d.res
cfl3d.turres
cfl3d.blomax
cfl3d.out15
cfl3d.prout
cfl3d.out20
ovrlp.bin
patch.bin
restart.bin

NASA Langley BACT Model: NACA 0012 af, AR=1.5 wing,.75TE Flap
Mach alpha beta ReUe Tinf,dR ialph ihstry

0.82000 0.00000 0.00000 0.236E+07 486.00 1 0
sref cref bref xmc ymc zmc

1.000 1.00000 1.00000 0.25000 0.00000 0.00000
dt irest iflagts fmax iunst cfl_tau

0.04000 0 3000 1.00000 3 2.00000
ngrid nplot3d nprint nwrest ichk i2d ntstep ita

1 1 1 1000 0 0 1 -2

Note that iunst = 3, for
deforming mesh plus
rigid grid motion

189

Surface Motion - Deforming Mesh
Example: Multi-motion using deforming plus rigid grid motion

ncg iem iadvance iforce ivisc(i) ivisc(j) ivisc(k)
2 0 0 1 5 5 5

idim jdim kdim
73 345 73

ilamlo ilamhi jlamlo jlamhi klamlo klamhi
0 0 0 0 0 0

inewg igridc is js ks ie je ke
0 0 0 0 0 0 0 0

idiag(i) idiag(j) idiag(k) iflim(i) iflim(j) iflim(k)
1 1 1 3 3 3

ifds(i) fds(j) ifds(k) rkap0(i) rkap0(j) rkap0(k)
1 1 1 0.3333 0.3333 0.3333

grid nbci0 nbcidim nbcj0 nbcjdim nbck0 nbckdim iovrlp
1 1 1 1 1 5 1 0

i0: grid segment bctype jsta jend ksta kend ndata
1 1 1001 1 345 1 73 0

idim: grid segment bctype jsta jend ksta kend ndata
1 1 1002 1 345 1 73 0

j0: grid segment bctype ista iend ksta kend ndata
1 1 1003 1 73 1 73 0

jdim: grid segment bctype ista end ksta kend ndata
1 1 1003 1 73 1 73 0

k0: grid segment bctype ista iend jsta jend ndata
1 1 0 1 49 1 33 0
1 2 2004 1 49 33 313 2

tw/tinf cq
0.00000 0.00000

1 3 0 1 49 313 345 0
1 4 0 49 73 1 173 0
1 5 0 49 73 173 345 0

kdim: grid segment bctype ista iend jsta jend ndata
1 1 1003 1 73 1 345 0

190

Surface Motion - Deforming Mesh
Example: Multi-motion using deforming plus rigid grid motion

mseq mgflag iconsf mtt ngam
1 2 1 0 2

issc epsssc(1) epsssc(2) epsssc(3) issr epsssr(1) epsssr(2) epsssr(3)
0 0.3000 0.3000 0.3000 0 0.3000 0.3000 0.3000

ncyc mglevg nemgl nitfo
8 3 0 0

mit1 mit2 mit3 mit4 mit5 ...
1 1 1

1-1 blocking data:
nbli

2
number grid ista jsta ksta iend jend kend isva1 isva2

1 1 1 1 1 49 33 1 1 2
2 1 49 1 1 73 173 1 1 2

number grid ista jsta ksta iend jend kend isva1 isva2
1 1 1 345 1 49 313 1 1 2
2 1 49 345 1 73 173 1 1 2

patch interface data:
ninter

0
plot3d output:

grid iptyp ista iend iinc jsta jend jinc ksta kend kinc
1 0 1 49 1 1 345 1 1 1 1

movie
0

print out:
grid iptyp ista iend iinc jsta jend jinc ksta kend kinc

1 0 1 49 1 1 345 1 1 1 1

191

Surface Motion - Deforming Mesh
Example: Multi-motion using deforming plus rigid grid motion

Control Surfaces:
ncs
0

Grid ista iend jsta jend ksta kend iwall inorm
moving grid data - rigid translation (forced motion):

ntrans
1

lref
1.0
grid itrans rfreq utrans vtrans wtrans

1 2 0.10 0.00 0.00 5.00
grid dxmax dymax dzmax

1 10. 10. 10.
moving grid data - rigid rotation (forced motion):

nrotat
0

lref
grid irotat rfreq omegax omegay omegaz xorig yorig zorig
grid dthxmx dthymx dthzmx
Moving grid data – deforming surface (forced motion):
ndefrm

2
lref
1.0

Grid idefrm rfreq u/omegax v/omegay w/omegaz xorig yorig zorig
1 2 0.05 0.00 10.00 0.00 0.75 0.00 0.00
1 2 0.05 0.00 10.00 0.00 0.75 0.00 0.00

Grid icsi icsf jcsi jcsf kcsi kcsf
1 25 37 33 65 1 1
1 25 37 281 313 1 1

Rigid grid motion
input

Surface motion
input

192

Surface Motion - Deforming Mesh
Example: Multi-motion using deforming plus rigid grid motion

Moving grid data – aeroelastic surface (aeroelastic motion):
naesrf

0
Iaesrf ngrid grefl uinf qinf nmodes iskyhook
Freq gmass damp x0(2n-1) xo(2n) gf0(2n)

Moddfl amp freq t0
Grid iaei iaef jaei jaef kaei kaef

Moving grid data – data for field/multiblock mesh movement
nskip isktyp beta1 alpha1 beta2 alpha2 nsprgit

0 -2 1.0 1.1 1.0 0.005 0
Control point index input
Moving grid data – multi-motion coupling
ncoupl

1
Slave master xorig yorig zorig

1 1 0.75 0.00 0.00

Note: CFL3D does not allow initiating new kinds of motion upon restarts. Therefore if an initial
deforming mesh computation is performed to reach an equilibrium before initiating a combined rigid
and moving (deforming) control surface computation, the option iunst = 3 must be used from the start
(that is after an initial steady state computation with dt < 0), with control surface motion set to zero.

Multi-motion coupling
data included

Aeroelastic header lines
included

Deforming mesh input

193

Aeroelastic Analysis
Overview

• CFL3D has the capability to perform both static and dynamic aeroelastic
analysis. In this analysis the fluid and structure interact through a time
marching simulation (e.g. flutter analysis, etc…)

• All aeroelastic and modal analyses are performed by running the code in
unsteady mode

• CFL3D performs only linear aeroelastic analysis
• The equations of structural dynamics must be decoupled modally

– Eigenvalue analysis is required prior to running CFD to obtain frequencies,
generalized masses and mode shapes.

– A preprocessing step projecting the mode shapes onto the CFD surface grids is
required.

– The code reads the modal data projected onto the CFD surfaces in the file
‘aesurf.dat’. This file must be contained in the directory in which the executable
resides.

• CFL3D also has the capability to perform unsteady deforming body analysis
using mode shapes. In this mode the user specifies modal motion (e.g.
control surface rotation, wing plunge oscillation, etc…) in the aeroelastic
input section

194

Aeroelastic Analysis
Example of an aeroelastic model

Consider the Benchmark Active
Controls Technology (BACT)
aeroelastic model shown. The
model has pitch and plunge
aeroelastic degrees of freedom. The
model parameters are:

MT = 5.966 slugs
Sα = 0.01420 slug-ft
Iα = 2.8017 slug-ft2
Kh = 2659 lb/ft
Ka = 2897 lb-ft/rad

195

Aeroelastic Analysis
Example of an aeroelastic model

The coupled equations of structural dynamics are

where ζ1 is plunge (h) and ζ2 is pitch (α). Eigen-analysis if this system
yields the frequencies

{ } { }
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−
=⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡

∫∫
∫∫

∞ ******

))(,(

),(
q

0
0

dydxxxyxc

dydxyxc
K

K
IS
SM

eap

phT ζζ
ααα

α &&

)12.5(sec/1564455.32
)36.3(sec/1113283.21

Hzrad
Hzradh

=
=

αω
ω

196

Aeroelastic Analysis
Example of an aeroelastic model

Using the eigenvectors

the generalized masses are obtained

5974345042.0001571926.0

0024991919.0409404775.0

2221

1211
⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
=

ϕϕ
ϕϕ

φ

000000000.1
000000000.1

=
=

αm
mh

197

Aeroelastic Analysis
Example of an aeroelastic model

… and the decoupled equations of structural dynamics

where

Carrying through the multiplication on the right-hand side, we have

{ } { }
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−
=⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡

∫∫
∫∫

∞ ******

T1-

2

2

))(,(

),(
qM

0
0

10
01

dydxxxyxc

dydxyxc
qq

eap

ph φ
ω

ω

α

&&

⎥
⎦

⎤
⎢
⎣

⎡
=

αm
m

M h

0
0 ζφ=q

{ } { }
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−+

−+
=⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡

∫∫
∫∫

∞ ****
2212

**

2111

**
1-

2

2

)}(){,(

)}({),(
qM

0
0

10
01

dydxxxyxc

dydxxxyxc
qq

eap

eaph

ϕϕ

ϕϕ

ω
ω

α

&&

198

Aeroelastic Analysis
Example of an aeroelastic model

The mode shapes that are input into CFL3D are revealed by the
last equations

These can be used to create the modal shape projected to each
wing surface grid point for input into CFL3D. Note that x* and y* are
in the same units as the structural model.

{ } { }
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−+

−+
=⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡

∫∫
∫∫

∞ ****
2212

**

2111

**
1-

2

2

)}(){,(

)}({),(
qM

0
0

10
01

dydxxxyxc

dydxxxyxc
qq

eap

eaph

ϕϕ

ϕϕ

ω
ω

α

&&

First mode shape, Φz,1

Second mode shape, Φz,2

199

Aeroelastic Analysis
Aeroelastic input

.

.

.

dt irest iflagts fmax iunst cfl_tau
0.0125 1 0 1.0 2 5.0

.

.

.
control surfaces:

ncs
0

grid ista iend jsta jend ksta kend iwall inorm
moving grid data - deforming surface (forced motion)
ndefrm

0
lref
grid idefrm rfreqi omegax omegay omegaz xorig yorig zorig
grid icsi icsf jcsi jcsf kcsi kcsf

iunst = 2 for an
aeroelastic simulation

User specified
deforming surface
Input, header lines
only

200

Aeroelastic Analysis
Aeroelastic input

moving grid data - aeroelastic surface (aeroelastic motion)
naesrf

1
iaesrf ngrid grefl uinf qinf nmodes iskyhk

1 -1 0.08333 730. 1000. 2 0
freq gmass damp x0(2*n-1) x0(2*n) gf0(2*n)

21.1113283 1.0000 0.00 0.0 0.0 0.
32.1564454 1.0000 0.00 0.0 0.0 0.

moddfl amp freq t0
0 0.000 0.00 0.00
0 0.000 0.00 0.00

grid iaei iaef jaei jaef kaei kaef
1 0 0 0 0 0 0

moving grid data - skip data for field/multiblock mesh movement
nskip isktyp beta1 alpha1 beta2 alpha2 nsprgit
0 -2 1.0 1.1 1.0 0.005 0

Control point index input
moving grid data - multi-motion coupling

ncoupl
0

slave master xorig yorig zorig

Aeroelastic input

Mesh deformation
input

201

Aeroelastic Analysis
Aeroelastic input

Focusing on the aeroelastic input section:

moving grid data - aeroelastic surface (aeroelastic motion)
naesrf

1
iaesrf ngrid grefl uinf qinf nmodes iskyhk

1 -1 0.08333 730. 1000. 2 0
freq gmass damp x0(2*n-1) x0(2*n) gf0(2*n)

21.1113283 1.0000 0.00 0.0 0.0 0.
32.1564454 1.0000 0.00 0.0 0.0 0.

moddfl amp freq t0
0 0.000 0.00 0.00
0 0.000 0.00 0.00

grid iaei iaef jaei jaef kaei kaef
1 0 0 0 0 0 0

iaesrf - Identifier of the aeroelastic surface for which data is being supplied
ngrid - Number of surface segments that make up this aeroelastic surface
nmodes - Number of modes to be modeled in CFL3D
iskyhk - Not currently used, any value will serve as a placeholder
uinf - Free-stream velocity, in the same units as the equations of structural dynamics
qinf - Dynamic pressure, in the same units as the equations of structural dynamics
grefl - Conversion from CFD grid units to structural equation units.

Number of aeroelastic
surfaces

naesrf lines

nmodes lines

one line only when
ngrid = -1 (Currently this
Is the only option)

202

Aeroelastic Analysis
Aeroelastic input

Regarding the input parameter grefl, consider the equations of structural dynamics for the
pitch/plunge example:

The actual equations solved in CFL3D are:

{ } { }
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

Φ

Φ
=⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡

∫∫
∫∫

∞ **
2,

**

**
1,

**
1-

2

2

),(

),(
qM

0
0

10
01

dydxyxc

dydxyxc
qq

zp

zph

αω
ω

&&

{ } { }
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

Φ

Φ
=⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡

∫∫
∫∫

∞ dydxyxc

dydxyxc
qq

zp

zph

1,

1,1-2
2

2

),(

),(
qMgrefl

0
0

10
01

αω
ω

&&

Lengths in structural
model units

Lengths in CFD
grid unitsCFDAE SSgrefl /=By definition:

203

Aeroelastic Analysis
Aeroelastic input

In the present example the structural equations are in units of feet, while the CFD grid
is in units of inches. Since the aspect ratio of the two models is identical, the
conversion for the present example can be obtained from

Suppose we wish to simulate the same aeroelastic model, but now with a 2D
CFD grid, having unit span.

Structural model: c = 1.333333 ft, b = 2.666667 ft
CFD grid model: c = 16 , b = 1

In this case we calculate:

This is the grefl parameter that would be entered in the aeroelastic input section.

unitgridftSSgrefl CFDAE /08333.0
144

1/ ≈==

unitgridftSSgrefl CFDAE /4714045.0
16

55555556.3/ ≈==

204

Aeroelastic Analysis
Modal form of the equations

Consider the decoupled equations of structural dynamics for N (or nmodes in the
input) modes

where q is the modal variable vector and Q is the generalized force vector, each of
length N. ω1 ,…, ωN are the natural frequencies of each structural mode in radians,
and m1 ,…, mN are the generalized masses.

{ } { } { }

{ }Q
m00
00
00m

00

00
00

200

00
002

100
00
001

1-
N

1-
1

2

2
111

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

O

O&O&&O qqq

NNN ω

ω

ζω

ζω

205

Aeroelastic Analysis
Modal form of the equations

CFL3D input definitions as they relate to the modal equations of
structural dynamics are as follows:

Units for frequency is radians/time (usually time scale is seconds
for the structural dynamics equations).

initNinit

initNinit

initNinit

N

N

N

QNgfQgf

qNxqx

qNxqx
Ndampingdamping
Nfreqfreq

mNgmassmgmass

==

==

=−=
==
==
==

)*2(0,,)2(0

)*2(0,,)2(0

)1*2(0,,)1(0
)(,,)1(
)(,,)1(
)(,,)1(

1

1

1

1

1

1

L

&L&

L

L

L

L

ζζ
ωω

206

Aeroelastic Analysis
Aeroelastic input

• x0(2*n-1) is the initial generalized displacement of the mode; will override the value in the
restart file (if restarting) when x0(2*n-1) is nonzero. Otherwise, it will not override the restart
value. This allows the mode to be perturbed for excitation of aeroelastic dynamic response
after a static aeroelastic starting solution has been performed.

• x0(2*n) is the initial generalized velocity of the mode; will override the value in the restart file
(if restarting) when x0(2*n) is nonzero. Otherwise, it will not override the restart value. This
allows the mode to be perturbed for excitation of aeroelastic dynamic response after a static
aeroelastic starting solution has been performed.

• gf0(2*n) is the generalized force offset to include for the mode. This value is included in
CFL3D computation of generalized force in the following way for mode n = 1 to nmodes:

{ })*2(02 ngfsdcgreflqQ npn −⋅Φ= ∫∫∞
rr

Value from input

207

Aeroelastic Analysis
Modal surface input

• Currently CFL3D assumes that the aeroelastic surface comprises
all boundary segments with the boundary condition types 1005,
1006, 2004, 2014 or 2016.

• Note that the boundary condition 1001 is not considered an
aeroelastic surface. Therefore, if a symmetry plane is required to
deform with a pitching wing, it must be treated as an inviscid wall
boundary (1005 or 1006)

• The modal input file aesurf.dat must have modal data for a given
surface point in free field ascii format (no commas) with Φx,n, Φy,n,
Φz,n modal deflections at each surface point for each mode n.

208

Aeroelastic Analysis
Format of the modal surface input

The following ordering is required:

j = 1 surface:
Φx,n(i,j,k) Φy,n(i,j,k) Φz,n(i,j,k) ,k = ksta to kend , i = ista to iend , repeat nseg times

j = jdim surface:
Φx,n(i,j,k) Φy,n(i,j,k) Φz,n(i,j,k) ,k = ksta to kend , i = ista to iend , repeat nseg times

k = 1 surface:
Φx,n(i,j,k) Φy,n(i,j,k) Φz,n(i,j,k) , j = jsta to jend , i = ista to iend , repeat nseg times

k = kdim surface:
Φx,n(i,j,k) Φy,n(i,j,k) Φz,n(i,j,k) , j = jsta to jend , i = ista to iend , repeat nseg times

i = 1 surface:
Φx,n(i,j,k) Φy,n(i,j,k) Φz,n(i,j,k) , j = jsta to jend , k = ksta to kend , repeat nseg times

i = idim surface:
Φx,n(i,j,k) Φy,n(i,j,k) Φz,n(i,j,k) , j = jsta to jend, k = ksta to kend , repeat nseg times,

Repeat all of the above input for n = 1 to nmodes, repeat ngrid times, repeat naesrf times.

Segment limits defined in
boundary condition input

209

Aeroelastic Analysis
Format of the modal surface input

• The ordering of the aeroelastic surface points must correspond to
the order of the points in the CFD grid file read by CFL3D.

• Aeroelastic segments must be input in the same block order as the
grid file, and segments must be input in order of ascending indices.

• When creating a multi zonal grid using the utility ‘splitter’, be aware
that the final ordering will generally not correspond to the ordering of
the unsplit grid. Ordering of the split grid zones can be found in the
‘splitter.out’ file, from which can be found the required order of the
surface grid points for the ‘aesurf.dat’ file.

Example: Consider a block face that has dimensions kdim = 49, idim =
49 with several aeroelastic segments. If segment 1 has indices k =
33 to 49, i = 13 to 33, and segment 2 has indices k = 1 to 33, i = 1 to
33, then segment 2 must be input first.

210

Aeroelastic Analysis
Aeroelastic output

• Aeroelastic time history output is in the file ‘genforce.dat’.
• This file is generated if iunst = 2 and aeroelastic surfaces

are defined in the input file (naesrf≠0).
• After header information, modal response data for each

mode is written sequentially.
• Unlike output data in the ‘cfl3d.subit_res’ file, a complete

time history of this data for the entire simulation is
retained and written/read to/from restart files and
subsequently output to the ‘genforce.dat’ file.

211

Aeroelastic Analysis
Aeroelastic output

Consider the example output contained in the ‘genforce.dat’ file:

NASA Langley BACT Model: NACA 0012 af, AR=1.5 wing,.75TE Flap
Mach= 0.7700E+00, alpha= 0.0000E+00, ReUe= 0.3860E+07
Number of aeroelastic surfaces = 1
Data for aeroelastic surface 1
mode number 1

it time xs(2*n-1) xs(2*n) gforcn(2*n)
1 0.3125000E-01 0.0000000E+00 0.0000000E+00 -0.3471162E-05
2 0.6250000E-01 0.0000000E+00 0.0000000E+00 -0.3214494E-05
3 0.9375000E-01 0.0000000E+00 0.0000000E+00 -0.2996337E-05
4 0.1250000E+00 0.0000000E+00 0.0000000E+00 -0.2789857E-05

mode number 2
it time xs(2*n-1) xs(2*n) gforcn(2*n)
1 0.3125000E-01 0.2980232E-09 0.3442899E-09 0.6291896E-05
2 0.6250000E-01 0.3089730E-09 0.3565678E-09 0.6644112E-05
3 0.9375000E-01 0.3203131E-09 0.3692693E-09 0.6907312E-05
4 0.1250000E+00 0.3320569E-09 0.3824084E-09 0.7143990E-05

Time - Non-dimensional time (CFL3D non-dimensionalization)
xs(2*n-1) - Modal or generalized variable output
xs(2*n) - Modal velocity output
gforcn(2*n) - Modal or generalized force output

Title line from the input file

Data from the input file

Mode 1 time history
from starting run

Mode 2 time history
from starting run

212

Aeroelastic Analysis
Strategy for aeroelastic computations

The following strategies may be used for performing static or dynamic
aeroelastic simulations

• Static aeroelastic computations can be performed by:
– Start either from scratch (irest = 0), or restart, after a steady state computation (in

which dt < 0, iunst = 0). Starting from scratch is not recommended.
– Set iunst = 2 , dt > 0 and damp = .99999… and perform the computation in a time

marching manner to convergence.

• Flutter onset computations can be performed by:
– Converging a static solution as outlined above.
– Setting damp to the correct value for the elastic system being modeled.
– Setting an initial perturbation x0(2*n) or x0(2*n-1) in the desired mode.*

* If a restart in the middle of a flutter computation is performed, the initial
perturbation values from the previous run must be reset to zero at the restart of the new run.

213

Aeroelastic Analysis
User specified modal motion

The user may specify modal motion within the aeroelastic input (e.g.
control surface rotation, wing plunge oscillation, impulse for frequency
response, etc…) The following modifications to the aeroelastic input
specifies modal motion:

.

.
moving grid data - aeroelastic surface (aeroelastic motion)

naesrf
1

iaesrf ngrid grefl uinf qinf nmodes iskyhk
1 -1 0.08333 730. 1000. 2 0

freq gmass damp x0(2*n-1) x0(2*n) gf0(2*n)
21.1113283 1.0000 0.00 0.0 0.0 0.
32.1564454 1.0000 0.00 0.0 0.0 0.

moddfl amp freq t0
1 0.005 0.20 0.00
0 0.000 0.00 0.00

grid iaei iaef jaei jaef kaei kaef
1 0 0 0 0 0 0

.

.

This line specifies motion for
mode 1

214

Aeroelastic Analysis
User specified modal motion

moddfl
type of time-varying modal perturbation desired:
< 0, mode displacement and velocity set to zero
= 0, no perturbation (solution via the dynamic modal equations)
= 1, harmonic (sinusoidal) perturbation
= 2, Gaussian pulse
= 3, step pulse

A (amp)
amplitude of modal perturbation.

ωr (freq)
reduced frequency of modal perturbation if moddfl = 1
half-width of Gaussian pulse if moddfl = 2
use any value as a placeholder for moddfl = 0

t0 (t0)
time about which Gaussian pulse is centered if moddfl = 2
time of the step pulse if moddfl = 3
use any value as a placeholder for moddfl = 0

215

Aeroelastic Analysis
User specified modal motion

For harmonic perturbation the modal displacement and velocities for mode n
are computed in the following way:

where A = amp, ωr = freq in radians per dimensional time, and t* is dimensional
time,

(uinf) is in the aeroelastic input section and is from the main
aerodynamic input section. t is CFL3D non-dimensional time.

For a Gaussian pulse the displacement and velocity for mode n are computed
with

)cos(,)sin(** tAkqtAq rrnrn ωω == &

[] []
2/)2log(

2,
2

0
*2

0
*

r

ttC
n

ttC
n

Cwhere

CAeqAeq

ω=

−== −−−− &

∞∞∞∞ == MUaagrefltt /,/*

∞U ∞M

216

Aeroelastic Analysis
User specified modal motion

For step pulse the modal displacement and velocities for mode n
are computed in the following way:

0,
2

,
22

0,0
2

0

*

0
*

*

*

0
*

*

0

0

*

0
*

==
∆

+>

∆
==

∆
+<<

∆
−

==
∆

−<

nn

nn

nn

qAqthenttttif

t
AqAqthentttttif

qqthenttttif

&

&

&

217

Aeroelastic Analysis
Example: Gaussian modal pulse and time step sizing

For this example:

Recommend sizing time step so that there are an absolute minimum of 25 time steps
within the half life of the pulse (∆t = kr/25). In this case we would have ∆t = 0.004.

0 0.25 0.5 0.75 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

q

t

Time to reach half height

2
0

/)2log(

/5.0,1.0,0.1

r

r

C

agrefltkA

ω=

=== ∞

greflat /0 ∞

1.0/ == ∞agreflk rr ω

∞∞∞∞ == MUaagrefltt /,/*

218

Aeroelastic Analysis
Example: Shaping and sizing the Gaussian modal pulse

0 25 50 75 1000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Q

f Hz

The user will need to ensure that all
the modes of interest lie within the
frequency band of the pulse

Fourier frequency
Spectrum

• For a linear response, we will usually want the amplitude as small as possible while staying
significantly (say several orders of magnitude) above numerical round off errors.

• Low frequency responses will be very sensitive to the steady convergence of a solution. Therefore,
great care must be exercised in adequately converging the steady state if an FRF is the desired
outcome.

• The solution is very sensitive to sub-iterative convergence at each time step. A strategy of multiple
restarts with different numbers of sub-iterations through the pulse region can reduce the overall run
time.

219

Keyword Input
Overview

• There is additional input in CFL3D version 6 that does not fit into an input
format consistent with earlier versions of the code. These input parameters
have been included as keyword input.

• Keyword input is an optional input specified by lines started by a line with ‘>’
and ended with a line containing ‘<‘.

• The following example illustrates how keyword input is included:

cfl3d.out20
ovrlp.bin
patch.bin
restart.bin

>
gamma 1.32
negvol 1
<
NASA Langley BACT Model: NACA 0012 af, AR=1.5 wing,.75TE Flap

Mach alpha beta ReUe Tinf,dR ialph ihstry
0.82000 0.00000 0.00000 0.236E+07 486.00 1 0

Keyword input included at the
end of file specification and
before the title line.

220

Keyword Input
Valid Keywords

Physical Properties

Name Description Default Value

cbar Ref. temp. for Sutherland Law 198.6

gamma Ratio of specific heats 1.4

pr Prandtl number 0.72

prt Turbulent Prandtl number 0.90

Limiters

Name Description Default Value

atol Tolerance for detecting singular lines 10-7

epsa_r Eigenvalue limiter (entropy fix for high Mach flows) 0.0

221

Keyword Input
Valid Keywords

Name Description Default Value

avn Factor multiplying uref for preconditioning 1.0

cprec Relative amount of preconditioning 0.0

uref Limiting velocity for preconditioning xmach

Preconditioning

Name Description Default Value

cltarg Target Cl 99999.

dalim Limit of alpha change (deg) per update 0.2

icycupdt Number of cycles between alpha updates (if > 0; if
< 0, alpha is never updated)

1

rlxalph Relaxation factor used to update angle of attack 1.0

Specified CL

222

Keyword Input
Valid Keywords

Name Description Default Value

cflturb Cfl no. for turbl eqns. = cflturb x abs(dt) If cflturb > 0 0
(model dependent default)

edvislim Limiter for eddy viscosity in 2-equation
turb models; eddy viscosity limited to edvislim times the

laminar viscosity

100000.

ibeta8kzeta flag (0/1) to set beta8 term when using k-enstrophy
turbulence model (ivisc=15); 0 = use beta8=0.0 (helps avoid

numerical problems); 1 = use beta8=2.3 (available after
V6.3)

0

ides flag (0/1) to perform DES with turbulence model (1) or not
(0)

0

cdes constant associated with DES 0.65

ieasmcc2d flag (0/1) to turn on 2-D curvature correction when using
EASM models (ivisc=8,9,11,12,13,14) (1) or not (0)

(available after V6.3)

0

isarc2d flag (0/1) to turn on 2-D curvature correction when using SA
model (ivisc=5) (1) or not (0) (available after V6.3)

0

Turbulence models

223

Keyword Input
Valid Keywords

Name Description Default Value

sarccr3 value of cr3 parameter in SARC model (available after V6.3) 0.6

ikoprod flag: 0=use approximate (vorticity-based) turb production
term (-2*mut*WijWji) for turb models 6, 7, 10, or 15; 1=use
strain-rate based term (2*mut*SijSij); 2=use full production

term (ivisc=15 only) (available after V6.3)

0
(vorticity-based

production)

isstdenom flag (0/1): 0=use vorticity term in denominator of eddy
viscosity in SST model (#7); 1=use strain term

(available after V6.3)

0
(vorticity term)

itaturb flag (0/1) to control time accuracy of turb. model; 0 for 1st
order in time regardless of parameter "ita" for the mean flow;

1 for same order as set by ita

1
(turb. Time accuracy

same as mean flow, set
via ita)

iturbord flag controls whether turbulence model advection terms are
1st or 2nd order upwind on RHS (1=1st, 2=2nd) (note: LHS

uses 1st order in both cases) (available after V6.3)

1
(1st order)

Turbulence models

224

Keyword Input
Valid Keywords

Name Description Default Value

iturbprod flag: 0=use strain-rate based turb production
term (2*mut*SijSij) for EASM turb models 8, 9, 13, or 14;

1=use full production term

0
(strain-rate based term)

nfreeze Freeze turb. model for nfreeze cycles 0
(not frozen)

nsubturb Number of iterations of turb model per cycle 1

pklimterm factor used to limit production of k in 2-eqn turb models
(chooses min of Pk and pklimterm*Dk); make this term large

for no limiting (available after V6.3)

20.0

tur10 & tur20 turbulent quantity freestream levels < 0 use default value
(different for each turb model, see manual Appendix H)

=0 use this number as the specified user input value

-1

tur1cut value that nondimensional epsilon (or omega or enstrophy)
is reset to when it tries to drop equal to or below tur1cutlev;
if <=0 then no update occurs when value tries to drop equal

to or below tur1cutlev (available after V6.3)

1.e-20 for all models
except -1 for ivisc=15

Turbulence models

225

Keyword Input
Valid Keywords

Name Description Default Value

tur2cut value that nondimensional k is reset to when it tries to drop
equal to or below tur2cutlev; if <=0 then no update occurs

when value tries to drop equal to or below tur2cutlev
(available after V6.3)

1.e-20

tur1cutlev &
tur2cutlev

lower levels of nondimensional epsilon (or omega or
enstrophy)

and k which, when reached, cause the turb quantities to be
reset to tur1cut or tur2cut (available after V6.3)

0

Turbulence models

226

Keyword Input
Valid Keywords

Name Description Default Value

idef_ss flag (0/1) to deform volume grid to surface in file
newsurf.p3d

0
(don’t deform)

meshdef flag (0/1) to bypass flow solution while still computing grid
operations such as metrics and volumes; 0 = normal

operation; 1 = bypass flow solution (available after V6.3)

0

negvol flag (0/1) to enable/disable stop if neg. volumes/bad
metrics are detected

0
(stop for negative volumes)

Deformation/grid motion

Input/output control

Name Description Default Value

ibin flag (0/1) for formatted/unformatted output
plot3d files

1 (unformatted)

iblnk flag (0/1) for un-iblanked/iblanked output plot3d
files

1 (iblanked)

227

Keyword Input
Valid Keywords

Input/output control

Name Description Default Value

iblnkfr flag (0/1) for un-iblanked/iblanked fringe points in
plot3d files (overset grids only)

1
(iblanked)

icgns flag (0/1) to not use/use CGNS files* 0 (don’t use CGNS files)

ip3dgrad flag (0/1) for solution/derivative data output to
plot3d q file (complex code only)

0
(solution to q file)

irghost flag to read ghost-cell data from restart file (1) or
not (0); V5 restart files and Beta V6 restart files do
not contain ghost-cell data; newer V6 restart files

do

1
(read ghost-cell data)

iwghost flag to write ghost-cell data to restart file (1) or not
(0); V5 restart files and Beta V6 restart files do not
contain ghost-cell data; newer V6 restart files do

1
(write ghost-cell data)

228

Keyword Input
Valid Keywords

Name Description Default Value

itime2read flag (0/1) to skip/read 2nd order (in time)
turbulence terms and dt in restart file: need to skip
if using an older time-accurate-with-2nd-order-time

restart file

1
(read 2nd order time

turbulence terms and dt)

iteravg flag to store iteration-averaged conserved
variables in PLOT3D files: 0 = no averaging or

storage 1 = start averaging now
2 = continue averaging from previous run

0

Input/output control

Name Description Default Value

memadd additional memory (in words) added to work array
(in case sizer underestimates)

0
(no addition to work)

memaddi additional memory (in words) added to iwork array
(in case sizer underestimates)

0
(no addition to iwork)

Memory management

229

Keyword Input
Valid Keywords

Name Description Default Value

noninflag flag (0/1) to indicate whether to use inertial (0) or
noninertial (1) reference frame for governing

equations; noninertial frames allow for steady state
solutions if the rotation rate is constant

0
(inertial reference frame)

xcentrot rotation center x-coordinate for non-inertial
reference frame (also used for roll-angle input)

0.0

ycentrot rotation center y-coordinate for non-inertial
reference frame (also used for roll-angle input)

0.0

xrotate rotation rate about x-axis for non-inertial reference
frame (non-dimensionalized the same way as

omegax for rotating grids - see manual)

0.0

yrotate rotation rate about y-axis for non-inertial reference
frame (non-dimensionalized the same way as

omegay for rotating grids - see manual)

0.0

zcentrot rotation center z-coordinate for non-inertial
reference frame (also used for roll-angle input)

0.0

zrotate rotation rate about z-axis for non-inertial reference
frame (non-dimensionalized the same way as

omegaz for rotating grids - see manual)

0.0

Reference frame

230

Keyword Input
Valid Keywords

Name Description Default Value

xrotrate_img complex perturbation to rotation rate about x-axis
for non-inertial reference frame, for computing rate

derivatives

0.0

yrotrate_img complex perturbation to rotation rate about y-axis
for non-inertial reference frame, for computing rate

derivatives

0.0

zrotrate_img complex perturbation to rotation rate about z-axis
for non-inertial reference frame, for computing rate

derivatives

0.0

Reference frame

Name Description Default Value

alpha_img Imaginary perturbation to alpha 0.0

beta_img Imaginary perturbation to beta 0.0

geom_img Imaginary perturbation to grid 0.0

Other

231

Keyword Input
Valid Keywords

Other

Name Description Default Value

reue_img Imaginary perturbation to unit Re 0.0

surf_img Imaginary perturbation to surface grid 0.0

ifullns flag (0/1) to specify inclusion of cross-derivative
terms; 0 = thin-layer N-S; 1 = full N-S (available

after V6.3)

0

ivolint flag (0/1) to use approximate/exact one-to-one
boundary volumes (0 emulates V5.0)

1 (exact volumes)

tinf_img Imaginary perturbation to Tinf 0.0

xmach_img Imaginary perturbation to Mach no. 0.0

iaxi2plane flag for use with particular axisymmetric cases (for
which i2d=0 and idim=2); if iaxi2plane = 1, the time
step based on CFL number is modified so it does
not depend on the i-direction metrics (available

after V6.3)

0
(no mods to time step)

roll_angle x-axis roll angle (deg) "+" is clockwise viewed from
"- x" (left roll to pilot) (grid is rotated to this angle)

0.0

232

Block Splitting and MPI
Overview

• Message Passing Interface (MPI) protocol is used for parallelization of
CFL3D

• MPI parallelizes by parceling out grid blocks to different processors
• For MPI to be useful, at least two or more blocks and at least three

processors will be required.
• Often grids will arrive as multiple block grids. However, there are several

reasons that additional block splitting will be required:
– If the original mesh is not split into a sufficient number of blocks to efficiently use

the processors available.
– If the blocks are of disparate sizes, so that load balancing will be difficult.

233

Block Splitting and MPI
Overview

• Note, however, that there is a limit on the number of blocks for a given
overall grid size for which efficient parallelization can take place.

– Problem of growing communications between processors compared to
processing per block (communication time).

– Because CFL3D treats block boundaries explicitly, splitting into an ever
increasing number of blocks amounts to making the code explicit. This means
that an increasing number of sub-iterations will be required as the number of
blocks increases

• The following illustrates the increasing communications with decreasing
block sizes….

234

Block Splitting and MPI
Problem of the humming bird versus the elephant

Consider the ratio of number of surface points to the total number of grid points as grid size
diminishes. These results are based on a grid having equal idim, jdim, kdim dimensions.

0 25 50 75 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R

idim

volume
areasurfaceR =

At an average dimension
of 10x10x10, boundary
data takes a third of
the total memory. (Which
is not a problem for MPI, but…
communication becomes
a growing percentage of
the computation time.)

235

Block Splitting and MPI
Overview

With the issues clearly in mind, there are times when splitting is useful…

• The tool ‘splitter’ is available with CFL3D for use in splitting blocks.
• It is created by performing the following command in the ‘build’ directory:

make splitter

• The executable will be in the directory ‘~/cfl3dv6/build/split/seq/’.
• An example input can be found in the CFL3D version 6 web page.

236

Block Splitting and MPI
Example: Splitting a single C-H grid

Lets consider again the BACT wing we have looked at previously. This
grid has i,j,k dimensions 73 (spanwise) x 345 (streamwise) x 73 (normal to
wing).

Suppose a 32 processor PC cluster
is available for this problem. It would
be useful to split this block into at least
24 blocks. However consideration
must also be given to how many
times each dimension can be split
and still retain multigridability

237

Block Splitting and MPI
Example: Splitting a single C-H grid

An acceptable block split can be obtained by requiring M, the number of
split blocks, in the following computation

be an integer. D is the overall dimension of the un-split grid, and d is
the proposed dimension of the split grid. For the current example, the j-
dimension can be split with blocks having dimension of 9, 87 or 173.

1
1

−
−

=
d
DM

2
1173
1345,4

187
1345,43

19
1345

=
−
−

==
−
−

==
−
−

= MMM

238

Block Splitting and MPI
Example: Splitting a single C-H grid

Note that block dimensions of 87 or 173 will allow only 3 levels of multigrid, a
dimension of 9 allows 4. We will chose a dimension of 87.

Similar computations for the idim = 73 and kdim = 73 lead us to chose 6 blocks in
those directions with dimension of 13. This will result in a total of 144 blocks.
This will allow us to use 4, 24, 48 or 144 processors efficiently.

These computations result in 3 splits in the j-direction, 5 splits in the i-direction
and 5 splits in the k-direction for a total of 13 splits. The input that performs these
splits is shown in the next slide.

239

Block Splitting and MPI
Example: Splitting a single C-H grid

The splitter input file for this grid is
shown:

INPUT (UNSPLIT) FILES
cfl3d.inp
ronnie.inp
grid.unf
sd_grid.unf
ICFLVER IRONVER IGRDFMT ISDFMT

5 1 1 1
OUTPUT (SPLIT) FILES
cfl3d.inp_split
ronnie.inp_split
grid_split.unf
sd_grid_split.unf
ICFLVER IRONVER IGRDFMT ISDFMT

5 1 1 1
NSPLITS
13
1
2
87
1
2
173
1
2
259

1
1
13
1
1
25
1
1
37
1
1
49
1
1
61
1
3
13
1
3
25
1
3
37
1
3
49
1
3
61

240

Block Splitting and MPI
Example: Splitting a single C-H grid

INPUT (UNSPLIT) FILES
cfl3d.inp
ronnie.inp
grid.unf
sd_grid.unf
ICFLVER IRONVER IGRDFMT ISDFMT

5 1 1 1
OUTPUT (SPLIT) FILES
cfl3d.inp_split
ronnie.inp_split
grid_split.unf
sd_grid_split.unf
ICFLVER IRONVER IGRDFMT ISDFMT

5 1 1 1

cfl3d.inp - cfl3d input file for the unsplit grid
ronnie.inp - ronnie input file for the unsplit grid, if not a patched case, enter the word null
grid.unf - grid file for the unsplit grid; can be formatted or unformatted
sd_grid.unf - sensitivity file for the unsplit grid NOTE: Currently not supported in Version 6; the same

functionality is now handled via complex variables and a complex-valued grid file;
enter the word null

241

Block Splitting and MPI
Example: Splitting a single C-H grid

INPUT (UNSPLIT) FILES
cfl3d.inp
ronnie.inp
grid.unf
sd_grid.unf
ICFLVER IRONVER IGRDFMT ISDFMT

5 1 1 1
OUTPUT (SPLIT) FILES
cfl3d.inp_split
ronnie.inp_split
grid_split.unf
sd_grid_split.unf
ICFLVER IRONVER IGRDFMT ISDFMT

5 1 1 1

cfl3d.inp_split - cfl3d input file for the split grid
ronnie.inp_split - ronnie input file for the split grid, if not a patched case, enter the word null
grid_split.unf - grid file for the split grid; can be formatted or unformatted
sd_grid_split.unf - sensitivity file for the split grid NOTE: Currently not supported in Version 6; the

same functionality is now handled via complex variables and a complex-
valued grid file; enter the word null

242

Block Splitting and MPI
Example: Splitting a single C-H grid

INPUT (UNSPLIT) FILES
cfl3d.inp
ronnie.inp
grid.unf
sd_grid.unf
ICFLVER IRONVER IGRDFMT ISDFMT

5 1 1 1
OUTPUT (SPLIT) FILES
cfl3d.inp_split
ronnie.inp_split
grid_split.unf
sd_grid_split.unf
ICFLVER IRONVER IGRDFMT ISDFMT

5 1 1 1

icflver
= 4 the cfl3d input file is a version 4.1 type
= -4 the cfl3d input file is a version 4.1hp type
= 5 the cfl3d input file is a version 5/6 type

ironver
= 0 ronnie input file is the old style, with all "from" blocks listed on one line
= 1 ronnie input file is the new style, with each "from" block having it's own line
NOTE: a value for ironver must always be entered, even if the case does not involve
patched grids.

243

Block Splitting and MPI
Example: Splitting a single C-H grid

INPUT (UNSPLIT) FILES
cfl3d.inp
ronnie.inp
grid.unf
sd_grid.unf
ICFLVER IRONVER IGRDFMT ISDFMT

5 1 1 1
OUTPUT (SPLIT) FILES
cfl3d.inp_split
ronnie.inp_split
grid_split.unf
sd_grid_split.unf
ICFLVER IRONVER IGRDFMT ISDFMT

5 1 1 1

igrdfmt
= 0 grid file is formatted
= 1 grid file is unformatted

isdfmt
= 0 sensitivity file is formatted
= 1 sensitivity file is unformatted

NOTE: Currently not supported in Version 6; the same functionality is now handled via complex
variables and a complex-valued grid file; however a value is still required - use 0 or 1

244

Block Splitting and MPI
Example: Splitting a single C-H grid

.

.
NSPLITS
13
1
2
87
1
2
173
1
2
259

.

.

nsplits - number of grid splits to perform (can be 0 in order to convert grid from formatted to
unformatted or vice versa. Following the value of nsplits, nsplits triplets of integers must
appear, one integer of the triplet per line….

nsplits

245

Block Splitting and MPI
Example: Splitting a single C-H grid

.
.

NSPLITS
13
1
2
87
1
2
173
1
2
259

.

.

iblk - block number of the block to be split. NOTE: iblk always refers to the original, unsplit
block number

ldir
= 1 split in the i-direction
= 2 split in the j-direction
= 3 split in the k-direction

index - split the block in the ldir direction at this value of the index

iblk

ldir

index

Same triplet repeated 13 times

246

Block Splitting and MPI
Example: Splitter output

*
* * * *
* * SPLITTER - CFL3D BLOCK AND INPUT FILE SPLITTER * *
* * * *
* * VERSION 6.X : Computational Fluids Lab, Mail Stop 128, * *
* * NASA Langley Research Center, Hampton, VA * *
* * Release Date: MMM DD, YYYY. * *
* * * *

*
*

memory allocation: 431.046108 Mbytes, double precision

input (unsplit) files
cfl3d.inp
null
wbgrid.cfl
null

icflver ironver igrdfmt isdfmt
5 1 1 1

output (split) files
cfl3d.inp_split
null
wbgrid_split.cfl
null

icflver ironver igrdfmt isdfmt
5 1 1 1

247

Block Splitting and MPI
Example: Splitter output

converting unsplit cfl3d input file to tlns3d map file

checking dimensions...

reading grid...
grid: wbgrid.cfl

block # 1: il= 73, jl= 345, kl= 73

number of splits = 13
split block coord index

1 1 J 87
2 1 J 173
3 1 J 259
4 1 I 13
5 1 I 25
6 1 I 37
7 1 I 49
8 1 I 61
9 1 K 13

10 1 K 25
11 1 K 37
12 1 K 49
13 1 K 61

new block old block i0 i1 j0 j1 k0 k1
1 1 1 13 1 87 61 73
2 1 1 13 87 173 61 73
3 1 1 13 173 259 61 73
4 1 1 13 259 345 61 73
5 1 13 25 259 345 61 73
6 1 13 25 173 259 61 73
7 1 13 25 87 173 61 73
8 1 13 25 1 87 61 73
9 1 25 37 1 87 61 73
10 1 25 37 87 173 61 73
11 1 25 37 173 259 61 73
12 1 25 37 259 345 61 73
13 1 37 49 259 345 61 73
14 1 37 49 173 259 61 73
15 1 37 49 87 173 61 73
16 1 37 49 1 87 61 73
17 1 49 61 1 87 61 73
18 1 49 61 87 173 61 73
19 1 49 61 173 259 61 73
20 1 49 61 259 345 61 73
21 1 61 73 259 345 61 73
22 1 61 73 173 259 61 73
23 1 61 73 87 173 61 73
24 1 61 73 1 87 61 73
25 1 61 73 1 87 49 61
26 1 61 73 87 173 49 61
27 1 61 73 173 259 49 61
28 1 61 73 259 345 49 61

248

Block Splitting and MPI
Example: Splitter output

.

.

.
121 1 61 73 1 87 1 13
122 1 61 73 87 173 1 13
123 1 61 73 173 259 1 13
124 1 61 73 259 345 1 13
125 1 49 61 259 345 1 13
126 1 49 61 173 259 1 13
127 1 49 61 87 173 1 13
128 1 49 61 1 87 1 13
129 1 37 49 1 87 1 13
130 1 37 49 87 173 1 13
131 1 37 49 173 259 1 13
132 1 37 49 259 345 1 13
133 1 25 37 259 345 1 13
134 1 25 37 173 259 1 13
135 1 25 37 87 173 1 13
136 1 25 37 1 87 1 13
137 1 13 25 1 87 1 13
138 1 13 25 87 173 1 13
139 1 13 25 173 259 1 13
140 1 13 25 259 345 1 13
141 1 1 13 259 345 1 13
142 1 1 13 173 259 1 13
143 1 1 13 87 173 1 13
144 1 1 13 1 87 1 13

split-grid basic dimensions are multigridable to ncg = 1

Input points: 1838505
Ouput points: 2117232

29 1 49 61 259 345 49 61
30 1 49 61 173 259 49 61
31 1 49 61 87 173 49 61
32 1 49 61 1 87 49 61
33 1 37 49 1 87 49 61
34 1 37 49 87 173 49 61
35 1 37 49 173 259 49 61
36 1 37 49 259 345 49 61
37 1 25 37 259 345 49 61
38 1 25 37 173 259 49 61
39 1 25 37 87 173 49 61
40 1 25 37 1 87 49 61
41 1 13 25 1 87 49 61
42 1 13 25 87 173 49 61
43 1 13 25 173 259 49 61
44 1 13 25 259 345 49 61
45 1 1 13 259 345 49 61
46 1 1 13 173 259 49 61
47 1 1 13 87 173 49 61
48 1 1 13 1 87 49 61

.

.

.

249

Block Splitting and MPI
Notes regarding use:

• IF A LIMITER IS DESIRED, USE IFLIM=4. This will allow for consistent results with
block splitting; iflim=3 is not recommended - iflim=4 is basically a correct
implementation of iflim=3 for multiple blocks, and should now be viewed as the
recommended limiter for any case that needs one.

• Also, for exact consistency between split and unsplit grids, version 5 emulation (i.e.
"Install -v5) should not be used. Version 5 (and earlier versions) made an
approximation for cell volumes at 1-1 block interfaces that has been eliminated in
version 6 in favor of the exact treatment.

• The input file part of the splitter works by first converting the unsplit CFL3D input file
to a TLNS3D map file, splitting the TLNS3D map file, then converting the split
TLNS3D map file back to a CFL3D input file.

250

Block Splitting and MPI
Notes (continued):

• Caveats: The conversions from the CFL3D input file to a TLNS3D map file are not
perfect! The user is urged check the resulting split CFL3D input (and patch) files.

– A useful check before actually splitting the files is to run this splitter with the number of
splittings = 0, and the output grid file as null. This will cause to code to go through the
translations, but the "split" files will have the same numbers of blocks, and the "split" grid will
not be output.

– A "diff" or "gdiff" will point to translation-induced differences that should be easier to sort out
than when coupled with true splitting. Note that the 2-step process almost always results in a
reordering of some boundary condition segments.

251

Running CFL3D in MPI mode

• MPI requires one processor for overhead. For example if a 32
processor cluster is employed, and there are 28 blocks to be
computed on 28 processors, then the command line will read:

mpirun –np 29 cfl3d_mpi < cfl3d.inp &

• You may want to verify the correct procedure for running mpi code
on your platform (e.g. some mpp's use -n instead of -np)

252

Running CFL3D in MPI mode
• Because version 6 has dynamic memory allocation, there is no requirement to run precfl3d before

you can run cfl3d. However, you may still find it useful to do so in order to assess how much
memory will be required to run the case at hand, allowing you to determine whether a particular
problem can fit within the memory of the machine, or to determine the appropriate queue in which
to submit the job.

• The usage of precfl3d has changed slightly from previous versions: you must now specify the
number of processors in addition to the input file, for example:

precfl3d -np num_procs < cfl3d.inp &

where num_procs is the total number of processors, including the host. When running on a single
processor, that processor is the host, so num_procs=1 will suffice to assess the memory
requirements for the sequential version of the code.

• An important reason why you may want to run precfl3d before running the parallel version of the
code is that for num_procs > 1, precfl3d will output an auxiliary file called ideal_speedup.dat.
This file will list the best possible speedup you could hope to achieve for the current case, using
various numbers of compute processors, ranging from 1 to the number of zones in your grid.

253

Running CFL3D in MPI mode
The BACT case with 144 blocks was run
on 24 processors (-np 25). In the
‘precfl3d.out’ file the following
information is contained:

BLOCK TO NODE MAPPING
no. of blocks = 288
no. of nodes = 24
block node

1 1
2 1
3 2
4 2
5 3
6 3
7 4
8 4
9 5

10 5
11 6
12 6
13 7
14 7

.

.

.
265 13
266 13
267 14
268 14
269 15
270 15
271 16
272 16
273 17
274 17
275 18
276 18
277 19
278 19
279 20
280 20
281 21
282 21
283 22
284 22
285 23
286 23
287 24
288 24

254

Running CFL3D in MPI mode
.
.

**

SUMMARY OF STORAGE REQUIREMENTS - W + WK ARRAYS

sequential version:

permanent array w requires 131825665 (words)
temporary array wk requires 2681342 (words)
temporary array iwk requires 187820 (words)

parallel version, per node:

permanent array w requires 5506908 (words)
temporary array wk requires 1500235 (words)
temporary array iwk requires 187820 (words)

>>> Estimate for mwork (sequential) = 134507007 <<<

>>> Estimate for mworki (sequential) = 187820 <<<

>>> Estimate for mwork (per node, parallel) = 7007143 <<<

>>> Estimate for mworki (per node, parallel) = 187820 <<<

>>> Parallel code sized for 24 nodes, min. (+host) <<<

**

255

Running CFL3D in MPI mode
In the ‘cfl3d.out’ file the same information
is found plus the following contained at
the end:

.

.
computational rate by mesh sequence (based on wall time):
iseq 1 181.13 microseconds/cell/time step

90.56 microseconds/cell/subiteration

timing for complete run - time in seconds

node user system total wall clock
0 10.15 17.60 27.75 325.00
1 3.64 0.55 4.19 228.00
2 5.37 0.92 6.29 325.00
3 3.90 0.52 4.42 228.00
4 5.36 0.87 6.23 325.00
5 5.85 1.14 6.99 324.00
6 4.54 0.89 5.43 228.00
7 4.38 0.83 5.21 227.00
8 4.03 0.79 4.82 226.00
9 4.31 0.70 5.01 228.00

10 6.08 1.00 7.08 325.00

11 4.40 0.77 5.17 227.00
12 4.19 0.65 4.84 227.00
13 4.20 0.74 4.94 226.00
14 4.42 0.66 5.08 225.00
15 4.25 0.81 5.06 226.00
16 4.35 0.68 5.03 225.00
17 4.08 0.83 4.91 225.00
18 4.22 0.87 5.09 225.00
19 4.35 0.66 5.01 225.00
20 4.17 0.66 4.83 225.00
21 3.78 0.55 4.33 224.00
22 3.59 0.49 4.08 225.00
23 3.58 0.51 4.09 224.00
24 3.40 0.40 3.80 224.00

total: 114.59 35.09 149.68

total run (wall) time = 0 hours 3 minutes 44 seconds

memory for cfl3d has been deallocated

256

Flow Field Visualization
Plot3D output

CFL3D is capable of creating Plot3D files of the grid and flow field.
Specification of the region of the flow field for output is found in the
following input lines:

.

.
dt irest iflagts fmax iunst cfl_tau

-2.0 0 0 1.0 0 5.0
ngrid nplot3d nprint nwrest ichk i2d ntstep ita

1 1 1 1000 0 1 1 -2
ncg iem iadvance iforce ivisc(i) ivisc(j) ivisc(k)

2 0 0 1 0 0 5
.
.

plot3d output:
grid iptyp ista iend iinc jsta jend jinc ksta kend kinc

1 0 1 1 1 1 999 1 1 999 1
movie

0

nplot3d specifies the number
of blocks to output

Input nplot3d
lines

If nplot3d < 0, then the Plot3D files are automatically set to include all solid
Surfaces (no field points) for 3D cases or all field points for 2D cases

257

Flow Field Visualization
Plot3D output

.
.

plot3d output:
grid iptyp ista iend iinc jsta jend jinc ksta kend kinc

1 0 1 1 1 1 999 1 1 999 1
movie

0

Grid - Designated grid number to be output
iptyp = 0 - grid point type – grid file and Q file output

= 1 - cell center type – grid file and Q file output
= 2 - cell center type - grid file and turbulence file output (ivisc > 1 only)
> 2 - cell center type – grid file and function file output (iptype = 3 – minimum distance to

nearest viscous wall or directed distance (ivisc > 1 only), iptype = 4 – eddy
viscosity (ivisc > 1 only)

ista, jsta, ksta - starting indices in the i,j,k directions
iend,jend,kend - ending indices in the i,j,k directions (note that if these values are set higher than

idim, jdim,kdim, the code will reset them to the block dimensions)
iinc,jinc,kinc - increment in the i,j,k directions

Note: Setting ista = iend = iinc = 0, etc… is a short hand way of specifying the entire range.

258

Flow Field Visualization
Movie output

.

.
plot3d output:

grid iptyp ista iend iinc jsta jend jinc ksta kend kinc
1 0 1 1 1 1 999 1 1 999 1

movie
10

Note that one gird file and one solutions file are generated.

Movie = 0 no output of intermediate solutions (if nplot3d > 0), then a single solution is written at the end of the run.
Movie > 0 output of additional solutions every movie iterations (time steps)
Movie < 0 output of the initial flow field at the beginning of the run and output of additional solutions every movie

iterations (time steps)

Caution: Use with care. Plot3D file will get very large very quickly.

The tool ‘moovmaker’ will read the plot3D solution and grid file and create a movie for a 2D flow field in which the 3rd

dimension will be time. This allows animating the 3rd dimension to produce a movie of the flow field.

Flag to append Plot3D solution output
every 10 time steps

259

Useful CFL3D Tools
• Get_FD.F

– This program reads two CFL3D restart files and calculate finite differences of force and
moment coefficients; it is used to validate complex-variable approach for determining solution
derivatives.

• INGRID_to_p3d.F
– This program converts PEGSUS 4.x INGRID file to a PLOT3D file that can be used in

CFL3D. Note that the INGRID file must correspond to grid points rather than "augmented"
cell centers.

• XINTOUT_to_ovrlp.F
– This program converts the XINTOUT overset grid interpolation file from PEGSUS to the

ovrlp.bin file used by CFL3D.
• cfl3d_to_pegbc.F

– This program creates a peg.bc.raw file for use with PEGSUS 5.x.
• cgns_to_cfl3dinput.F

– This program reads a CGNS file and creates a PLOT3D-type grid as well as a best-guess for
a CFL3D input file.

260

Useful CFL3D Tools
• everyother_xyz.F

– This program reads a grid and creates an every-other-point grid. This can be useful in
combination with the program v6inpdoubhalf.F, in order to reduce the required CFL3D run-
time memory when you are only running on a coarser-level grid (and not taking it up to the
finer level(s).

• grid_perturb.F
– This program generates a real-valued grid (PLOT3D multiblock form) by reading in a real-

valued grid (PLOT3D multiblock form) and a corresponding real-valued matrix of grid-
sensitivity derivatives (PLOT3D multiblock function file form, with 3*ndv variables for the x,y,z
components of the ndv design variables). The code Get_FD.F may be used with the two
restart files to determine d(Cl)/d(DV), d(Cd)/d(DV), etc.

• grid_perturb_cmplx.F
– This program generates a complex-valued grid (PLOT3D multiblock form) by reading in a

real-valued grid (PLOT3D multiblock form) and a corresponding real-valued matrix of grid-
sensitivity derivatives (PLOT3D multiblock function file form, with 3*ndv variables for the x,y,z
components of the ndv design variables). The output grid may be read into the complex
version of CFL3D (cfl3dcmplx_mpi or cfl3dcmplx_seq) to determine the solution derivatives
with respect to the chosen design variable.

261

Useful CFL3D Tools
• initialize_field.F

– This program creates a restart.bin restart file in which you can specify specific initial
conditions, region by region. This can be useful when "freestream everywhere" is not a
desirable initial condition.

• moovmaker.F
– This program reads the PLOT3D files output by CFL3D when the MOVIE parameter is used

for 2-D datasets (or 3-D datasets surface-only), and creates new PLOT3D files with time as
the third (k) direction.

• p3d_to_INGRID.F
– This program converts either PLOT3D or CFL3D type grids into either INGRID type grids that

can be used with PEGSUS 4.x, or PLOT3D type grids that can be used with PEGSUS 5.x.
The converted grids can contain either the grid points as given in the input grids, or
"augmented" cell centers of the input grids.

• p3d_to_cfl3drst.F
– This program reads PLOT3D files and creates an approximate restart.bin restart file. This

can be useful if: (1) you are given a PLOT3D Q-file from another code, and you wish to use it
as a basis for starting CFL3D, or (2) you have lost the CFL3D restart file, but you still have
the PLOT3D Q-file.

262

Useful CFL3D Tools
• plot3dg_to_cgns.F

– This program reads a PLOT3D grid file and a CFL3D input file and creates a CGNS file (with
grid, BC, and 1-to-1 connectivity information in it).

• v6_restart_mod.F
– This program reads a restart.bin restart file and manipulates it. It can switch between

unformatted and formatted (which is useful if you need to transfer the restart file to a machine
of different architecture). It can also write out the restart file either the same size, half the
size, or double the size. Going to half size is useful if one wishes to restart from a fine grid
solution and run on a coarser level. User can choose to coarsen/refine only particular index
directions, if desired. The program cannot both coarsen and refine different directions
simultaneously.

• v6inpdoubhalf.F
– This program reads a CFL3D input file and creates a new input file appropriate for a grid of

either half or double the size. This can be useful in combination with the program
everyother_xyz.F when running on coarser grid levels, and you wish to reduce the run-time
memory required.

263

References

Krist, S. L., CFL3D User’s Manual (Version 5.0), TM-1998-208444,
June 1998.

CFL3D version 6.0 web site: http://cfl3d.larc.nasa.gov/Cfl3dv6/cfl3dv6.html
Bartels, R. E., “Finite Macro-Element Mesh Deformation in a Structured

Multi-Block Navier-Stokes Code,” NASA/TM-2005-213789, July 2005.
Bartels, R. E., “Mesh Strategies for Accurate Computation of Unsteady

Spoiler and Aeroelastic Problems,” Journal of Aircraft, Vol. 37, No. 3, pp.
521-525.

http://cfl3d.larc.nasa.gov/Cfl3dv6/cfl3dv6.html

264

Summary

• CFL3D is a general purpose production-level CFD code for fluid
dynamics, with many capabilities and options.

• This tutorial has summarized many of the newest features of the
code, and also has explained in detail how to set up and run it for
general cases.

• Particular focus has been given to CFL3D’s upgraded deforming
mesh and aeroelastic analysis capabilities.

	Users Guide for CFL3D Version 6.4 – Course Notes
	Abstract
	Course Table of Contents
	Course Table of Contents
	Course Table of Contents
	Introduction and Course Overview
	Introduction and Course Overview
	What’s New in CFL3D v6.4
	CFL3D Overview
	CFL3D Overview
	CFL3D Overview
	CFL3D Overview
	CFL3D Overview
	CFL3D Overview
	Getting Started
	Getting Started
	Getting Started
	Getting Started
	Getting Started
	Getting Started
	Equations and dimensionsReference parameters
	Equations and dimensions
	Equations and dimensionsNon-dimensional variables
	Problem Formulation and SetupOverview
	Problem Formulation and SetupGrid generation
	Problem Formulation and SetupGrid generation
	Problem Formulation and SetupGrid generation
	Problem Formulation and SetupGrid generation
	Problem Formulation and SetupGrid generation
	Problem Formulation and SetupGrid generation
	Problem Formulation and SetupGrid generation
	Problem Formulation and SetupGrid generation
	Problem Formulation and SetupBlocking and boundary conditions
	Problem Formulation and SetupBlocking and boundary conditions
	Problem Formulation and SetupBlocking and boundary conditions
	Problem Formulation and SetupBlocking and boundary conditions
	Problem Formulation and SetupBlocking and boundary conditions
	Problem Formulation and SetupBlocking and boundary conditions
	Problem Formulation and SetupBlocking and boundary conditions
	Problem Formulation and SetupBlocking and boundary conditions
	Problem Formulation and SetupBlocking and boundary conditions
	Problem Formulation and SetupBlocking and boundary conditions
	Problem Formulation and SetupBlocking and boundary conditions
	Problem Formulation and SetupBlocking and boundary conditions
	Problem Formulation and SetupBlocking and boundary conditions
	Problem Formulation and SetupBlocking and boundary conditions
	Problem Formulation and SetupBlocking and boundary conditions
	Problem Formulation and SetupBlocking and boundary conditions
	Problem Formulation and SetupBlocking and boundary conditions
	Problem Formulation and SetupBlocking and boundary conditions
	Problem Formulation and SetupBlocking and boundary conditions
	Problem Formulation and SetupBlocking and boundary conditions
	Problem Formulation and SetupBlocking and boundary conditions
	Problem Formulation and SetupBlocking and boundary conditions
	Problem Formulation and SetupExample of typical “outer” boundary conditions
	Problem Formulation and SetupBlocking and boundary conditions
	Problem Formulation and SetupBlocking and boundary conditions
	Problem Formulation and SetupBlocking and boundary conditions
	Problem Formulation and SetupBlocking and boundary conditions
	Problem Formulation and SetupBlocking and boundary conditions
	Setting up a Steady Run Input/output file specifications
	Setting up a Steady Run Input/output file specifications
	Setting up a Steady Run Navigating diagnostic output
	Setting up a Steady RunTitle line and condition data
	Setting up a Steady RunTitle line and condition data
	Setting up a Steady RunCalculation of Reue
	Setting up a Steady RunCalculation of Reue
	Setting up a Steady RunReference data input
	Setting up a Steady RunSteady solution cycling input
	Setting up a Steady RunSteady solution cycling input
	Setting up a Steady Run Steady solution cycling input
	Setting up a Steady RunGrid sequencing
	Setting up a Steady RunGrid sequencing output
	Setting up a Steady RunGrid sequencing output
	Setting up a Steady Run Grid sequencing
	Setting up a Steady Run Grid sequencing
	Setting up a Steady Run Grid sequencing
	Setting up a Steady Run Grid sequencing
	Setting up a Steady Run Grid sequencing at coarsest levels only
	Setting up a Steady Run Grid sequencing at coarsest levels only
	Setting up a Steady RunGrid sequencing at coarsest levels only
	Setting up a Steady RunRamping up dt
	Setting up a Steady RunAdditional input
	Setting up a Steady RunAdditional input
	Setting up a Steady RunTurbulence model input
	Setting up a Steady RunTurbulence model
	Setting up a Steady RunTurbulence model
	Setting up a Steady RunTurbulence model output
	Setting up a Steady RunMiscellaneous input
	Setting up a Steady RunMiscellaneous input
	Setting up an Unsteady RunInput for time advancement
	Setting up an Unsteady RunInput for time advancement
	Setting up an Unsteady RunInput for time advancement
	Setting up an Unsteady RunInput for time advancement
	Setting up an Unsteady RunEquations for t-TS time advancement
	Setting up an Unsteady RunEquations for t-TS time advancement
	Setting up an Unsteady RunCase study: The t-TS and t-TS schemes, oscillating spoiler
	Setting up an Unsteady RunSpeeding up execution time
	Setting up an Unsteady RunDiagonalized versus full Jacobian matrices
	Setting up an Unsteady RunSizing Dt, number of subiterations
	Setting up an Unsteady RunSizing Dt, number of subiterations
	Setting up an Unsteady RunSizing Dt, number of subiterations
	Setting up an Unsteady RunSub-iterative output – checking convergence
	Setting up an Unsteady RunSub-iterative output– checking convergence
	Setting up an Unsteady RunSub-iterative output– checking convergence
	Setting up an Unsteady RunSub-iterative turbulence output
	Setting up an Unsteady RunMultigrid strategies
	Setting up an Unsteady RunMultigrid strategies
	Setting up an Unsteady RunMultigrid strategies
	Setting up an Unsteady RunMultigrid strategies
	Setting up an Unsteady RunMultigrid strategies
	User Specified Grid MotionOverview
	User Specified Grid MotionRigid grid rotation
	User Specified Rigid Grid MotionRigid grid rotation
	User Specified Rigid Grid MotionRigid grid rotation
	User Specified Rigid Grid MotionRigid grid rotation
	User Specified Rigid Grid MotionRigid grid rotation input
	User Specified Rigid Grid MotionRigid grid rotation input
	User Specified Rigid Grid MotionRigid grid rotation input
	User Specified Rigid Grid MotionRigid grid rotation input
	User Specified Rigid Grid MotionRigid grid rotation input
	User Specified Rigid Grid MotionRigid grid rotation input
	User Specified Rigid Grid MotionRigid grid rotation
	User Specified Rigid Grid MotionRigid grid translation input
	User Specified Rigid Grid MotionRigid grid translation input
	User Specified Rigid Grid MotionRigid grid translation input
	Surface Motion - Deforming MeshOverview
	Surface Motion - Deforming MeshOverview
	Surface Motion - Deforming MeshDeforming mesh terminology
	Surface Motion - Deforming MeshDeforming mesh using Exponential Decay Method
	Surface Motion - Deforming MeshDeforming mesh with Exponential Decay Method
	Surface Motion - Deforming MeshTrans-Finite Interpolation (TFI) of interior points
	Surface Motion - Deforming MeshCoordinate systems and terminology for Finite Macro-Element Method
	Surface Motion - Deforming MeshFinite Macro-Element Method
	Surface Motion - Deforming MeshInput for deforming mesh
	Surface Motion - Deforming MeshInput for deforming mesh
	Surface Motion - Deforming MeshInput for deforming mesh
	Surface Motion - Deforming MeshOption 1 – Code generated minimum number of control points
	Surface Motion - Deforming MeshOption 2 – Code generated skip values
	Surface Motion - Deforming MeshOption 3 – User i,j,k skip input
	Surface Motion - Deforming MeshPermissible skip values
	Surface Motion - Deforming MeshOption 4 – User input of i,j,k control point indices
	Surface Motion - Deforming MeshOption 4 – User input of i,j,k control point indices
	Surface Motion - Deforming MeshExample 1: 3D Control surface rotation with Exponential Decay method
	Surface Motion - Deforming MeshExample 1: 3D Control surface rotation with Exponential Decay method
	Surface Motion - Deforming MeshExample 1: 3D Control surface rotation with Exponential Decay method
	Surface Motion - Deforming MeshExample 1: 3D Control surface rotation with Exponential Decay method
	Surface Motion - Deforming MeshExample 1: 3D Control surface rotation with Exponential Decay method
	Surface Motion - Deforming MeshExample 1: 3D Control surface rotation with Exponential Decay method
	Surface Motion - Deforming MeshExample 1: 3D Control surface rotation with Exponential Decay method
	Surface Motion - Deforming MeshExample 1: 3D Control surface rotation with Exponential Decay method
	Surface Motion - Deforming MeshExample 1: 3D Control surface rotation with Exponential Decay method
	Surface Motion - Deforming MeshExample 1: 3D Control surface rotation with Exponential Decay method
	Surface Motion - Deforming MeshExample 1: 3D Control surface rotation with Exponential Decay method
	Surface Motion - Deforming MeshExample 2 : 2D Flap rotation with Finite Macro-Element Method
	Surface Motion - Deforming MeshExample 2 : 2D Flap rotation with Finite Macro-Element Method
	Surface Motion - Deforming MeshExample 2 : 2D Flap rotation with Finite Macro-Element Method
	Surface Motion - Deforming MeshExample 2 : 2D Flap rotation with Finite Macro-Element Method
	Surface Motion - Deforming MeshExample 2 : 2D Flap rotation with Finite Macro-Element Method
	Surface Motion - Deforming MeshExample 2 : 2D Flap rotation with Finite Macro-Element Method
	Surface Motion - Deforming MeshExample 2 : 2D Flap rotation – 1-1 block point checking
	Surface Motion - Deforming MeshExample 2 : 2D Flap rotation using Exponential Decay Method
	Surface Motion - Deforming MeshExample 2 : 2D Flap rotation using Exponential Decay Method
	Surface Motion - Deforming MeshExample 2 : 2D Flap rotation using Exponential Decay Method
	Surface Motion - Deforming MeshExample 2 : 2D Flap rotation using Exponential Decay Method
	Surface Motion - Deforming MeshExample 2 : 2D Flap rotation
	Surface Motion - Deforming MeshExample 2 : 2D Flap rotation
	Surface Motion - Deforming MeshExample 2 : 2D Flap rotation
	Surface Motion - Deforming MeshExample 2 : 2D Flap rotation
	Surface Motion - Deforming MeshExample 2 : 2D Flap rotation
	Surface Motion - Deforming MeshExample 2 : 2D Flap rotation
	Surface Motion - Deforming MeshExample 2 : 2D Flap rotation
	Surface Motion - Deforming MeshExample 3 : 2D airfoil rotation with Finite Macro-Element Method
	Surface Motion - Deforming MeshExample 3 : 2D airfoil rotation with Exponential Decay Method
	Surface Motion - Deforming MeshExample 4 : Internal flow through a flexible tube using the Finite Macro-Element Method
	Surface Motion - Deforming MeshExample 5 : Transport wing bending using the Exponential Decay Method
	Surface Motion - Deforming MeshGeometric conservation law
	Surface Motion - Deforming MeshGeometric conservation law
	Surface Motion - Deforming MeshMultiple types of coupled motion
	Surface Motion - Deforming MeshExample: Control surface rotation plus wing plunging
	Surface Motion - Deforming MeshExample: Multi-motion using deforming mesh
	Surface Motion - Deforming MeshExample: Multi-motion using deforming mesh
	Surface Motion - Deforming MeshExample: Multi-motion using deforming mesh
	Surface Motion - Deforming MeshExample: Multi-motion using deforming mesh
	Surface Motion - Deforming MeshExample: Multi-motion using deforming mesh
	Surface Motion - Deforming MeshExample: Multi-motion using deforming plus rigid grid motion
	Surface Motion - Deforming MeshExample: Multi-motion using deforming plus rigid grid motion
	Surface Motion - Deforming MeshExample: Multi-motion using deforming plus rigid grid motion
	Surface Motion - Deforming MeshExample: Multi-motion using deforming plus rigid grid motion
	Surface Motion - Deforming MeshExample: Multi-motion using deforming plus rigid grid motion
	Aeroelastic AnalysisOverview
	Aeroelastic AnalysisExample of an aeroelastic model
	Aeroelastic AnalysisExample of an aeroelastic model
	Aeroelastic AnalysisExample of an aeroelastic model
	Aeroelastic AnalysisExample of an aeroelastic model
	Aeroelastic AnalysisExample of an aeroelastic model
	Aeroelastic AnalysisAeroelastic input
	Aeroelastic AnalysisAeroelastic input
	Aeroelastic AnalysisAeroelastic input
	Aeroelastic AnalysisAeroelastic input
	Aeroelastic AnalysisAeroelastic input
	Aeroelastic AnalysisModal form of the equations
	Aeroelastic AnalysisModal form of the equations
	Aeroelastic AnalysisAeroelastic input
	Aeroelastic AnalysisModal surface input
	Aeroelastic AnalysisFormat of the modal surface input
	Aeroelastic AnalysisFormat of the modal surface input
	Aeroelastic AnalysisAeroelastic output
	Aeroelastic AnalysisAeroelastic output
	Aeroelastic AnalysisStrategy for aeroelastic computations
	Aeroelastic AnalysisUser specified modal motion
	Aeroelastic AnalysisUser specified modal motion
	Aeroelastic AnalysisUser specified modal motion
	Aeroelastic AnalysisUser specified modal motion
	Aeroelastic AnalysisExample: Gaussian modal pulse and time step sizing
	Aeroelastic AnalysisExample: Shaping and sizing the Gaussian modal pulse
	Keyword InputOverview
	Keyword InputValid Keywords
	Keyword InputValid Keywords
	Keyword InputValid Keywords
	Keyword InputValid Keywords
	Keyword InputValid Keywords
	Keyword InputValid Keywords
	Keyword InputValid Keywords
	Keyword InputValid Keywords
	Keyword InputValid Keywords
	Keyword InputValid Keywords
	Keyword InputValid Keywords
	Keyword InputValid Keywords
	Block Splitting and MPIOverview
	Block Splitting and MPIOverview
	Block Splitting and MPIProblem of the humming bird versus the elephant
	Block Splitting and MPIOverview
	Block Splitting and MPIExample: Splitting a single C-H grid
	Block Splitting and MPIExample: Splitting a single C-H grid
	Block Splitting and MPIExample: Splitting a single C-H grid
	Block Splitting and MPIExample: Splitting a single C-H grid
	Block Splitting and MPIExample: Splitting a single C-H grid
	Block Splitting and MPIExample: Splitting a single C-H grid
	Block Splitting and MPIExample: Splitting a single C-H grid
	Block Splitting and MPIExample: Splitting a single C-H grid
	Block Splitting and MPIExample: Splitting a single C-H grid
	Block Splitting and MPIExample: Splitting a single C-H grid
	Block Splitting and MPIExample: Splitter output
	Block Splitting and MPIExample: Splitter output
	Block Splitting and MPIExample: Splitter output
	Block Splitting and MPI
	Block Splitting and MPI
	Running CFL3D in MPI mode
	Running CFL3D in MPI mode
	Running CFL3D in MPI mode
	Running CFL3D in MPI mode
	Running CFL3D in MPI mode
	Flow Field VisualizationPlot3D output
	Flow Field VisualizationPlot3D output
	Flow Field VisualizationMovie output
	Useful CFL3D Tools
	Useful CFL3D Tools
	Useful CFL3D Tools
	Useful CFL3D Tools
	References
	Summary

